Multiscale visual quality assessment for cluster analysis with self-organizing maps
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many di erent clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with re ned parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual
cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We de ne, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERNARD, Jürgen, Tatiana von LANDESBERGER, Sebastian BREMM, Tobias SCHRECK, 2011. Multiscale visual quality assessment for cluster analysis with self-organizing maps. IS&T/SPIE Electronic Imaging. San Francisco, California. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2011. SPIE, 2011, pp. 78680N-78680N-12. SPIE Proceedings. 7868. Available under: doi: 10.1117/12.872545BibTex
@inproceedings{Bernard2011-01-24Multi-16618, year={2011}, doi={10.1117/12.872545}, title={Multiscale visual quality assessment for cluster analysis with self-organizing maps}, number={7868}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2011}, pages={78680N--78680N-12}, editor={Wong, Pak Chung}, author={Bernard, Jürgen and Landesberger, Tatiana von and Bremm, Sebastian and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16618"> <dc:creator>Bremm, Sebastian</dc:creator> <dcterms:title>Multiscale visual quality assessment for cluster analysis with self-organizing maps</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Bernard, Jürgen</dc:contributor> <dcterms:issued>2011-01-24</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many di erent clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with re ned parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual<br />cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We de ne, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Landesberger, Tatiana von</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16618"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-08T11:13:05Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T23:25:15Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16618/1/Schreck_multiscale.pdf"/> <dc:contributor>Bremm, Sebastian</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Visualization and data analysis 2011 : 24 - 25 January 2011, California, United States ; [part of] IS&T/SPIE electronic imaging, science and technology / sponsored and publ. by IS&T - the Society for Imaging Science and Technology; SPIE. Pak Chung Wong ... (Eds.). - Bellingham, Wash. : SPIE [u.a.], 2011. - pp. 7868 0N. - (Proceedings of SPIE ; 7868). - ISBN 978-0-8194-8405-5</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16618/1/Schreck_multiscale.pdf"/> <dc:creator>Bernard, Jürgen</dc:creator> <dc:creator>Landesberger, Tatiana von</dc:creator> </rdf:Description> </rdf:RDF>