Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?

Lade...
Vorschaubild
Dateien
Yu_2-5l5qm0yebj696.pdf
Yu_2-5l5qm0yebj696.pdfGröße: 1.04 MBDownloads: 406
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
REHBEIN, Ines, ed., Gabriella LAPESA, ed., Goran GLAVAS, ed. and others. Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021). Duisburg-Essen: GSCL, 2021, pp. 13-24
Zusammenfassung

Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the "European Refugee Crisis" between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
Konferenz
1st Workshop on Computational Linguistics for Political Text Analysis, 6. Sept. 2021, Düsseldorf
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690YU, Qi, Anselm FLIETHMANN, 2021. Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?. 1st Workshop on Computational Linguistics for Political Text Analysis. Düsseldorf, 6. Sept. 2021. In: REHBEIN, Ines, ed., Gabriella LAPESA, ed., Goran GLAVAS, ed. and others. Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021). Duisburg-Essen: GSCL, 2021, pp. 13-24
BibTex
@inproceedings{Yu2021Frame-56106,
  year={2021},
  title={Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?},
  url={https://gscl.org/media/pages/arbeitskreise/cpss/cpss-2021/workshop-proceedings/352683648-1631172151/cpss2021-proceedings.pdf},
  publisher={GSCL},
  address={Duisburg-Essen},
  booktitle={Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021)},
  pages={13--24},
  editor={Rehbein, Ines and Lapesa, Gabriella and Glavas, Goran},
  author={Yu, Qi and Fliethmann, Anselm}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56106">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-13T10:48:42Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Yu, Qi</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56106/3/Yu_2-5l5qm0yebj696.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56106"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dcterms:title>Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?</dcterms:title>
    <dc:contributor>Fliethmann, Anselm</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Fliethmann, Anselm</dc:creator>
    <dc:contributor>Yu, Qi</dc:contributor>
    <dcterms:abstract xml:lang="eng">Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the "European Refugee Crisis" between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56106/3/Yu_2-5l5qm0yebj696.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-13T10:48:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen