Publikation:

Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?

Lade...
Vorschaubild

Dateien

Yu_2-5l5qm0yebj696.pdf
Yu_2-5l5qm0yebj696.pdfGröße: 1.04 MBDownloads: 484

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

REHBEIN, Ines, ed., Gabriella LAPESA, ed., Goran GLAVAS, ed. and others. Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021). Duisburg-Essen: GSCL, 2021, pp. 13-24

Zusammenfassung

Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the "European Refugee Crisis" between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

1st Workshop on Computational Linguistics for Political Text Analysis, 6. Sept. 2021, Düsseldorf
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690YU, Qi, Anselm FLIETHMANN, 2021. Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?. 1st Workshop on Computational Linguistics for Political Text Analysis. Düsseldorf, 6. Sept. 2021. In: REHBEIN, Ines, ed., Gabriella LAPESA, ed., Goran GLAVAS, ed. and others. Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021). Duisburg-Essen: GSCL, 2021, pp. 13-24
BibTex
@inproceedings{Yu2021Frame-56106,
  year={2021},
  title={Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?},
  url={https://gscl.org/media/pages/arbeitskreise/cpss/cpss-2021/workshop-proceedings/352683648-1631172151/cpss2021-proceedings.pdf},
  publisher={GSCL},
  address={Duisburg-Essen},
  booktitle={Proceedings of 1st Workshop on Computational Linguistics for Political Text Analysis (CPSS-2021)},
  pages={13--24},
  editor={Rehbein, Ines and Lapesa, Gabriella and Glavas, Goran},
  author={Yu, Qi and Fliethmann, Anselm}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56106">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-13T10:48:42Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Yu, Qi</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56106/3/Yu_2-5l5qm0yebj696.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56106"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dcterms:title>Frame detection in German political discourses : How far can we go without large-scale manual corpus annotation?</dcterms:title>
    <dc:contributor>Fliethmann, Anselm</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Fliethmann, Anselm</dc:creator>
    <dc:contributor>Yu, Qi</dc:contributor>
    <dcterms:abstract xml:lang="eng">Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the "European Refugee Crisis" between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56106/3/Yu_2-5l5qm0yebj696.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-13T10:48:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen