Automated identification of bias inducing words in news articles using linguistic and context-oriented features

Lade...
Vorschaubild
Dateien
Spinde_2-5futcux6vkvc4.pdf
Spinde_2-5futcux6vkvc4.pdfGröße: 1.3 MBDownloads: 518
Datum
2021
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Processing & Management. Elsevier. 2021, 58(3), 102505. ISSN 0306-4573. eISSN 1873-5371. Available under: doi: 10.1016/j.ipm.2021.102505
Zusammenfassung

Media has a substantial impact on public perception of events, and, accordingly, the way media presents events can potentially alter the beliefs and views of the public. One of the ways in which bias in news articles can be introduced is by altering word choice. Such a form of bias is very challenging to identify automatically due to the high context-dependence and the lack of a large-scale gold-standard data set. In this paper, we present a prototypical yet robust and diverse data set for media bias research. It consists of 1,700 statements representing various media bias instances and contains labels for media bias identification on the word and sentence level. In contrast to existing research, our data incorporate background information on the participants’ demographics, political ideology, and their opinion about media in general. Based on our data, we also present a way to detect bias-inducing words in news articles automatically. Our approach is feature-oriented, which provides a strong descriptive and explanatory power compared to deep learning techniques. We identify and engineer various linguistic, lexical, and syntactic features that can potentially be media bias indicators. Our resource collection is the most complete within the media bias research area to the best of our knowledge. We evaluate all of our features in various combinations and retrieve their possible importance both for future research and for the task in general. We also evaluate various possible Machine Learning approaches with all of our features. XGBoost, a decision tree implementation, yields the best results. Our approach achieves an F1-score of 0.43, a precision of 0.29, a recall of 0.77, and a ROC AUC of 0.79, which outperforms current media bias detection methods based on features. We propose future improvements, discuss the perspectives of the feature-based approach and a combination of neural networks and deep learning with our current system.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Media bias, Feature engineering, Text analysis, Context analysis, News analysis, Bias data set
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SPINDE, Timo, Lada RUDNITCKAIA, Jelena MITROVIĆ, Felix HAMBORG, Michael GRANITZER, Bela GIPP, Karsten DONNAY, 2021. Automated identification of bias inducing words in news articles using linguistic and context-oriented features. In: Information Processing & Management. Elsevier. 2021, 58(3), 102505. ISSN 0306-4573. eISSN 1873-5371. Available under: doi: 10.1016/j.ipm.2021.102505
BibTex
@article{Spinde2021-05Autom-52980,
  year={2021},
  doi={10.1016/j.ipm.2021.102505},
  title={Automated identification of bias inducing words in news articles using linguistic and context-oriented features},
  number={3},
  volume={58},
  issn={0306-4573},
  journal={Information Processing & Management},
  author={Spinde, Timo and Rudnitckaia, Lada and Mitrović, Jelena and Hamborg, Felix and Granitzer, Michael and Gipp, Bela and Donnay, Karsten},
  note={Article Number: 102505}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52980">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52980/1/Spinde_2-5futcux6vkvc4.pdf"/>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dcterms:title>Automated identification of bias inducing words in news articles using linguistic and context-oriented features</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52980/1/Spinde_2-5futcux6vkvc4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Donnay, Karsten</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52980"/>
    <dc:contributor>Granitzer, Michael</dc:contributor>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:creator>Granitzer, Michael</dc:creator>
    <dc:contributor>Mitrović, Jelena</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:creator>Spinde, Timo</dc:creator>
    <dcterms:abstract xml:lang="eng">Media has a substantial impact on public perception of events, and, accordingly, the way media presents events can potentially alter the beliefs and views of the public. One of the ways in which bias in news articles can be introduced is by altering word choice. Such a form of bias is very challenging to identify automatically due to the high context-dependence and the lack of a large-scale gold-standard data set. In this paper, we present a prototypical yet robust and diverse data set for media bias research. It consists of 1,700 statements representing various media bias instances and contains labels for media bias identification on the word and sentence level. In contrast to existing research, our data incorporate background information on the participants’ demographics, political ideology, and their opinion about media in general. Based on our data, we also present a way to detect bias-inducing words in news articles automatically. Our approach is feature-oriented, which provides a strong descriptive and explanatory power compared to deep learning techniques. We identify and engineer various linguistic, lexical, and syntactic features that can potentially be media bias indicators. Our resource collection is the most complete within the media bias research area to the best of our knowledge. We evaluate all of our features in various combinations and retrieve their possible importance both for future research and for the task in general. We also evaluate various possible Machine Learning approaches with all of our features. XGBoost, a decision tree implementation, yields the best results. Our approach achieves an F&lt;sub&gt;1&lt;/sub&gt;-score of 0.43, a precision of 0.29, a recall of 0.77, and a ROC AUC of 0.79, which outperforms current media bias detection methods based on features. We propose future improvements, discuss the perspectives of the feature-based approach and a combination of neural networks and deep learning with our current system.</dcterms:abstract>
    <dc:contributor>Rudnitckaia, Lada</dc:contributor>
    <dc:creator>Mitrović, Jelena</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-24T13:40:37Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-24T13:40:37Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021-05</dcterms:issued>
    <dc:creator>Rudnitckaia, Lada</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen