Integrated visual analysis of patterns in time series and text data : Workflow and application to financial data analysis
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this article, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which are significantly connected in time to quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a priori method. First, based on heuristics, we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a priori method supports the discovery of such sequential temporal patterns. Then, various text features such as the degree of sentence nesting, noun phrase complexity, and the vocabulary richness, are extracted from the news items to obtain meta-patterns. Meta-patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time, cluster, and sequence visualization and analysis functionality. We provide a case study and an evaluation on financial data where we identify important future work. The workflow could be generalized to other application domains such as data analysis of smart grids, cyber physical systems, or the security of critical infrastructure, where the data consist of a combination of quantitative and textual time series data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANNER, Franz, Wolfgang JENTNER, Tobias SCHRECK, Andreas STOFFEL, Lyubka SHARALIEVA, Daniel A. KEIM, 2016. Integrated visual analysis of patterns in time series and text data : Workflow and application to financial data analysis. In: Information Visualization. 2016, 15(1), pp. 75-90. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871615576925BibTex
@article{Wanner2016-01-01Integ-31189, year={2016}, doi={10.1177/1473871615576925}, title={Integrated visual analysis of patterns in time series and text data : Workflow and application to financial data analysis}, number={1}, volume={15}, issn={1473-8716}, journal={Information Visualization}, pages={75--90}, author={Wanner, Franz and Jentner, Wolfgang and Schreck, Tobias and Stoffel, Andreas and Sharalieva, Lyubka and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31189"> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dc:creator>Sharalieva, Lyubka</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Stoffel, Andreas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31189/1/Wanner_0-289947.pdf"/> <dc:creator>Wanner, Franz</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-18T09:42:24Z</dc:date> <dcterms:title>Integrated visual analysis of patterns in time series and text data : Workflow and application to financial data analysis</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Jentner, Wolfgang</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Stoffel, Andreas</dc:creator> <dc:contributor>Sharalieva, Lyubka</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">In this article, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which are significantly connected in time to quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a priori method. First, based on heuristics, we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a priori method supports the discovery of such sequential temporal patterns. Then, various text features such as the degree of sentence nesting, noun phrase complexity, and the vocabulary richness, are extracted from the news items to obtain meta-patterns. Meta-patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time, cluster, and sequence visualization and analysis functionality. We provide a case study and an evaluation on financial data where we identify important future work. The workflow could be generalized to other application domains such as data analysis of smart grids, cyber physical systems, or the security of critical infrastructure, where the data consist of a combination of quantitative and textual time series data.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-18T09:42:24Z</dcterms:available> <dc:contributor>Wanner, Franz</dc:contributor> <dcterms:issued>2016-01-01</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31189"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31189/1/Wanner_0-289947.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>