The Newton polygon and elliptic problems with parameter
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the study of the resolvent of a scalar elliptic operator, say, on a manifold without boundary there is a well-known Agmon-Agranovich-Vishik condition of ellipticity with parameter which guarantees the existence of a ray of minimal growth of the resolvent. The paper is devoted to the investigation of the same problem in the case of systems which are elliptic in the sense of Douglis-Nirenberg. We look for algebraic conditions on the symbol providing the existence of the resolvent set containing a ray on the complex plane. We approach the problem using the Newton polyhedron method. The idea of the method is to study simultaneously all the quasihomogeneous parts of the system obtained by assigning to the spectral parameter various weights, defined by the corresponding Newton polygon. On this way several equivalent necessary and sufficient conditions on the symbol of the system guaranteeing the existence and sharp estimates for the resolvent are found. One of the equivalent conditions can be formulated in the following form: all the upper left minors of the symbol satisfy ellipticity conditions. This subclass of systems elliptic in the sense of Douglis-Nirenberg was introduced by A. Kozhevnikov.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Reinhard MENNICKEN, Leonid R. VOLEVIČ, 1998. The Newton polygon and elliptic problems with parameter. In: Mathematische Nachrichten. 1998, 192, pp. 125-157. Available under: doi: 10.1002/mana.19981920108BibTex
@article{Denk1998Newto-719, year={1998}, doi={10.1002/mana.19981920108}, title={The Newton polygon and elliptic problems with parameter}, volume={192}, journal={Mathematische Nachrichten}, pages={125--157}, author={Denk, Robert and Mennicken, Reinhard and Volevič, Leonid R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/719"> <dc:creator>Mennicken, Reinhard</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dcterms:available> <dc:creator>Denk, Robert</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/719/1/The_Newton_polygon_and_elliptic_problems_with_parameter.pdf"/> <dc:contributor>Mennicken, Reinhard</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>The Newton polygon and elliptic problems with parameter</dcterms:title> <dcterms:bibliographicCitation>First publ. in: Mathematische Nachrichten 192 (1998), pp. 125-157</dcterms:bibliographicCitation> <dc:contributor>Volevič, Leonid R.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Denk, Robert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/719/1/The_Newton_polygon_and_elliptic_problems_with_parameter.pdf"/> <dcterms:abstract xml:lang="eng">In the study of the resolvent of a scalar elliptic operator, say, on a manifold without boundary there is a well-known Agmon-Agranovich-Vishik condition of ellipticity with parameter which guarantees the existence of a ray of minimal growth of the resolvent. The paper is devoted to the investigation of the same problem in the case of systems which are elliptic in the sense of Douglis-Nirenberg. We look for algebraic conditions on the symbol providing the existence of the resolvent set containing a ray on the complex plane. We approach the problem using the Newton polyhedron method. The idea of the method is to study simultaneously all the quasihomogeneous parts of the system obtained by assigning to the spectral parameter various weights, defined by the corresponding Newton polygon. On this way several equivalent necessary and sufficient conditions on the symbol of the system guaranteeing the existence and sharp estimates for the resolvent are found. One of the equivalent conditions can be formulated in the following form: all the upper left minors of the symbol satisfy ellipticity conditions. This subclass of systems elliptic in the sense of Douglis-Nirenberg was introduced by A. Kozhevnikov.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/719"/> <dc:creator>Volevič, Leonid R.</dc:creator> <dcterms:issued>1998</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> </rdf:Description> </rdf:RDF>