The Newton polygon and elliptic problems with parameter

Lade...
Vorschaubild
Datum
1998
Autor:innen
Mennicken, Reinhard
Volevič, Leonid R.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In the study of the resolvent of a scalar elliptic operator, say, on a manifold without boundary there is a well-known Agmon-Agranovich-Vishik condition of ellipticity with parameter which guarantees the existence of a ray of minimal growth of the resolvent. The paper is devoted to the investigation of the same problem in the case of systems which are elliptic in the sense of Douglis-Nirenberg. We look for algebraic conditions on the symbol providing the existence of the resolvent set containing a ray on the complex plane. We approach the problem using the Newton polyhedron method. The idea of the method is to study simultaneously all the quasihomogeneous parts of the system obtained by assigning to the spectral parameter various weights, defined by the corresponding Newton polygon. On this way several equivalent necessary and sufficient conditions on the symbol of the system guaranteeing the existence and sharp estimates for the resolvent are found. One of the equivalent conditions can be formulated in the following form: all the upper left minors of the symbol satisfy ellipticity conditions. This subclass of systems elliptic in the sense of Douglis-Nirenberg was introduced by A. Kozhevnikov.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Newton polygon, systems elliptic in the sense of Douglis Nirenberg, systems elliptic with parameter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690DENK, Robert, Reinhard MENNICKEN, Leonid R. VOLEVIČ, 1998. The Newton polygon and elliptic problems with parameter. In: Mathematische Nachrichten. 1998, 192, pp. 125-157. Available under: doi: 10.1002/mana.19981920108
BibTex
@article{Denk1998Newto-719,
  year={1998},
  doi={10.1002/mana.19981920108},
  title={The Newton polygon and elliptic problems with parameter},
  volume={192},
  journal={Mathematische Nachrichten},
  pages={125--157},
  author={Denk, Robert and Mennicken, Reinhard and Volevič, Leonid R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/719">
    <dc:creator>Mennicken, Reinhard</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dcterms:available>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/719/1/The_Newton_polygon_and_elliptic_problems_with_parameter.pdf"/>
    <dc:contributor>Mennicken, Reinhard</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>The Newton polygon and elliptic problems with parameter</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in: Mathematische Nachrichten 192 (1998), pp. 125-157</dcterms:bibliographicCitation>
    <dc:contributor>Volevič, Leonid R.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:format>application/pdf</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/719/1/The_Newton_polygon_and_elliptic_problems_with_parameter.pdf"/>
    <dcterms:abstract xml:lang="eng">In the study of the resolvent of a scalar elliptic operator, say, on a manifold  without boundary there is a well-known Agmon-Agranovich-Vishik condition of ellipticity with parameter which guarantees the existence of a ray of minimal growth of  the  resolvent.  The  paper  is  devoted   to   the investigation of the same problem in the case of systems which are elliptic in the sense of Douglis-Nirenberg.  We look for algebraic  conditions on the  symbol  providing  the  existence of the resolvent set containing a ray on the complex plane. We approach the problem using the Newton polyhedron method. The idea of the method is to study simultaneously all the quasihomogeneous parts of the system obtained by assigning to the  spectral parameter various weights, defined by the corresponding Newton polygon. On this way several equivalent necessary and sufficient conditions on the symbol of the system guaranteeing the existence and  sharp estimates for the resolvent  are found. One of the equivalent conditions can be formulated in the following form: all the upper left minors of the symbol satisfy ellipticity conditions. This subclass of systems elliptic in the sense of Douglis-Nirenberg was introduced by A. Kozhevnikov.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/719"/>
    <dc:creator>Volevič, Leonid R.</dc:creator>
    <dcterms:issued>1998</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen