Equivariant cohomology of (Z2)r-manifolds and syzygies

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Fundamenta Mathematicae. 2018, 243(1), pp. 55-74. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm405-12-2017
Zusammenfassung

We consider closed manifolds with (Z2)r-action, which are obtained as intersections of products of spheres of a fixed dimension with certain ‘generic’ hyperplanes. This class contains the real versions of the ‘big polygon spaces’ defined and considered by M. Franz (2015). We calculate the equivariant cohomology with F2-coefficients, which in many examples turns out to be torsion-free but not free and realizes all orders of syzygies, which are in accordance with the restrictions proved by Allday et al. (unpublished). The final results for the real versions are analogous to those for the big polygon spaces in Franz (2015), where (S1)r-actions and rational coefficients are considered, but we consider a wider class of manifolds, and the point of view as well as the method of proof, for which it is essential to consider equivariant cohomology for various related groups, are quite different.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PUPPE, Volker, 2018. Equivariant cohomology of (Z2)r-manifolds and syzygies. In: Fundamenta Mathematicae. 2018, 243(1), pp. 55-74. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm405-12-2017
BibTex
@article{Puppe2018Equiv-45139,
  year={2018},
  doi={10.4064/fm405-12-2017},
  title={Equivariant cohomology of (Z<sub>2</sub>)<sup>r</sup>-manifolds and syzygies},
  number={1},
  volume={243},
  issn={0016-2736},
  journal={Fundamenta Mathematicae},
  pages={55--74},
  author={Puppe, Volker}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45139">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We consider closed manifolds with (Z&lt;sub&gt;2&lt;/sub&gt;)&lt;sup&gt;r&lt;/sup&gt;-action, which are obtained as intersections of products of spheres of a fixed dimension with certain ‘generic’ hyperplanes. This class contains the real versions of the ‘big polygon spaces’ defined and considered by M. Franz (2015). We calculate the equivariant cohomology with F&lt;sub&gt;2&lt;/sub&gt;-coefficients, which in many examples turns out to be torsion-free but not free and realizes all orders of syzygies, which are in accordance with the restrictions proved by Allday et al. (unpublished). The final results for the real versions are analogous to those for the big polygon spaces in Franz (2015), where (S&lt;sup&gt;1&lt;/sup&gt;)&lt;sup&gt;r&lt;/sup&gt;-actions and rational coefficients are considered, but we consider a wider class of manifolds, and the point of view as well as the method of proof, for which it is essential to consider equivariant cohomology for various related groups, are quite different.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Equivariant cohomology of (Z&lt;sub&gt;2&lt;/sub&gt;)&lt;sup&gt;r&lt;/sup&gt;-manifolds and syzygies</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-20T14:57:52Z</dcterms:available>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Puppe, Volker</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-20T14:57:52Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45139"/>
    <dc:creator>Puppe, Volker</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen