Publikation:

Equivariant cohomology of (Z2)r-manifolds and syzygies

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Fundamenta Mathematicae. 2018, 243(1), pp. 55-74. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm405-12-2017

Zusammenfassung

We consider closed manifolds with (Z2)r-action, which are obtained as intersections of products of spheres of a fixed dimension with certain ‘generic’ hyperplanes. This class contains the real versions of the ‘big polygon spaces’ defined and considered by M. Franz (2015). We calculate the equivariant cohomology with F2-coefficients, which in many examples turns out to be torsion-free but not free and realizes all orders of syzygies, which are in accordance with the restrictions proved by Allday et al. (unpublished). The final results for the real versions are analogous to those for the big polygon spaces in Franz (2015), where (S1)r-actions and rational coefficients are considered, but we consider a wider class of manifolds, and the point of view as well as the method of proof, for which it is essential to consider equivariant cohomology for various related groups, are quite different.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PUPPE, Volker, 2018. Equivariant cohomology of (Z2)r-manifolds and syzygies. In: Fundamenta Mathematicae. 2018, 243(1), pp. 55-74. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm405-12-2017
BibTex
@article{Puppe2018Equiv-45139,
  year={2018},
  doi={10.4064/fm405-12-2017},
  title={Equivariant cohomology of (Z<sub>2</sub>)<sup>r</sup>-manifolds and syzygies},
  number={1},
  volume={243},
  issn={0016-2736},
  journal={Fundamenta Mathematicae},
  pages={55--74},
  author={Puppe, Volker}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45139">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We consider closed manifolds with (Z&lt;sub&gt;2&lt;/sub&gt;)&lt;sup&gt;r&lt;/sup&gt;-action, which are obtained as intersections of products of spheres of a fixed dimension with certain ‘generic’ hyperplanes. This class contains the real versions of the ‘big polygon spaces’ defined and considered by M. Franz (2015). We calculate the equivariant cohomology with F&lt;sub&gt;2&lt;/sub&gt;-coefficients, which in many examples turns out to be torsion-free but not free and realizes all orders of syzygies, which are in accordance with the restrictions proved by Allday et al. (unpublished). The final results for the real versions are analogous to those for the big polygon spaces in Franz (2015), where (S&lt;sup&gt;1&lt;/sup&gt;)&lt;sup&gt;r&lt;/sup&gt;-actions and rational coefficients are considered, but we consider a wider class of manifolds, and the point of view as well as the method of proof, for which it is essential to consider equivariant cohomology for various related groups, are quite different.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Equivariant cohomology of (Z&lt;sub&gt;2&lt;/sub&gt;)&lt;sup&gt;r&lt;/sup&gt;-manifolds and syzygies</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-20T14:57:52Z</dcterms:available>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Puppe, Volker</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-20T14:57:52Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45139"/>
    <dc:creator>Puppe, Volker</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen