Sums of squares in algebraic function fields over a complete discretely valued field

No Thumbnail Available
Files
There are no files associated with this item.
Date
2014
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Pacific Journal of Mathematics ; 267 (2014), 2. - pp. 257-276. - ISSN 0030-8730. - eISSN 1945-5844
Abstract
A recently found local-global principle for quadratic forms over function fields of curves over a complete discretely valued field is applied to the study of quadratic forms, sums of squares, and related field invariants.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
isotropy, local-global principle, real field, sums of squares, u-invariant, Pythagoras number, valuation, algebraic function fields
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BECHER, Karim Johannes, David GRIMM, Jan VAN GEEL, 2014. Sums of squares in algebraic function fields over a complete discretely valued field. In: Pacific Journal of Mathematics. 267(2), pp. 257-276. ISSN 0030-8730. eISSN 1945-5844. Available under: doi: 10.2140/pjm.2014.267.257
BibTex
@article{Becher2014squar-30095,
  year={2014},
  doi={10.2140/pjm.2014.267.257},
  title={Sums of squares in algebraic function fields over a complete discretely valued field},
  number={2},
  volume={267},
  issn={0030-8730},
  journal={Pacific Journal of Mathematics},
  pages={257--276},
  author={Becher, Karim Johannes and Grimm, David and Van Geel, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30095">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Van Geel, Jan</dc:creator>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30095"/>
    <dc:contributor>Grimm, David</dc:contributor>
    <dcterms:abstract xml:lang="eng">A recently found local-global principle for quadratic forms over function fields of curves over a complete discretely valued field is applied to the study of quadratic forms, sums of squares, and related field invariants.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Becher, Karim Johannes</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-26T14:56:39Z</dcterms:available>
    <dc:creator>Grimm, David</dc:creator>
    <dc:contributor>Becher, Karim Johannes</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-26T14:56:39Z</dc:date>
    <dcterms:title>Sums of squares in algebraic function fields over a complete discretely valued field</dcterms:title>
    <dc:contributor>Van Geel, Jan</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed