Publikation:

Forecasting the pulse : How deviations from regular patterns in online data can identify offline phenomena

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Jürgens, Pascal

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Internet Research. 2013, 23(5), pp. 589-607. ISSN 1066-2243. eISSN 2054-5657. Available under: doi: 10.1108/IntR-06-2012-0115

Zusammenfassung

Purpose – The steady increase of data on human behavior collected online holds significant research potential for social scientists. The purpose of this paper is to add a systematic discussion of different online services, their data generating processes, the offline phenomena connected to these data, and by demonstrating, in a proof of concept, a new approach for the detection of extraordinary offline phenomena by the analysis of online data. Design/methodology/approach – To detect traces of extraordinary offline phenomena in online data, the paper determines the normal state of the respective communication environment by measuring the regular dynamics of specific variables in data documenting user behavior online. In its proof of concept, the paper does so by concentrating on the diversity of hashtags used on Twitter during a given time span. The paper then uses the seasonal trend decomposition procedure based on loess (STL) to determine large deviations between the state of the system as forecasted by the model and the empirical data. The paper takes these deviations as indicators for extraordinary events, which led users to deviate from their regular usage patterns. Findings – The paper shows in the proof of concept that this method is able to detect deviations in the data and that these deviations are clearly linked to changes in user behavior triggered by offline events. Originality/value – The paper adds to the literature on the link between online data and offline phenomena. The paper proposes a new theoretical approach to the empirical analysis of online data as indicators of offline phenomena. The paper will be of interest to social scientists and computer scientists working in the field.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690JUNGHERR, Andreas, Pascal JÜRGENS, 2013. Forecasting the pulse : How deviations from regular patterns in online data can identify offline phenomena. In: Internet Research. 2013, 23(5), pp. 589-607. ISSN 1066-2243. eISSN 2054-5657. Available under: doi: 10.1108/IntR-06-2012-0115
BibTex
@article{Jungherr2013Forec-36435,
  year={2013},
  doi={10.1108/IntR-06-2012-0115},
  title={Forecasting the pulse : How deviations from regular patterns in online data can identify offline phenomena},
  number={5},
  volume={23},
  issn={1066-2243},
  journal={Internet Research},
  pages={589--607},
  author={Jungherr, Andreas and Jürgens, Pascal}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36435">
    <dc:creator>Jürgens, Pascal</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-20T11:14:30Z</dcterms:available>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Jürgens, Pascal</dc:contributor>
    <dcterms:abstract xml:lang="eng">Purpose – The steady increase of data on human behavior collected online holds significant research potential for social scientists. The purpose of this paper is to add a systematic discussion of different online services, their data generating processes, the offline phenomena connected to these data, and by demonstrating, in a proof of concept, a new approach for the detection of extraordinary offline phenomena by the analysis of online data. Design/methodology/approach – To detect traces of extraordinary offline phenomena in online data, the paper determines the normal state of the respective communication environment by measuring the regular dynamics of specific variables in data documenting user behavior online. In its proof of concept, the paper does so by concentrating on the diversity of hashtags used on Twitter during a given time span. The paper then uses the seasonal trend decomposition procedure based on loess (STL) to determine large deviations between the state of the system as forecasted by the model and the empirical data. The paper takes these deviations as indicators for extraordinary events, which led users to deviate from their regular usage patterns. Findings – The paper shows in the proof of concept that this method is able to detect deviations in the data and that these deviations are clearly linked to changes in user behavior triggered by offline events. Originality/value – The paper adds to the literature on the link between online data and offline phenomena. The paper proposes a new theoretical approach to the empirical analysis of online data as indicators of offline phenomena. The paper will be of interest to social scientists and computer scientists working in the field.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36435"/>
    <dc:contributor>Jungherr, Andreas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-20T11:14:30Z</dc:date>
    <dcterms:title>Forecasting the pulse : How deviations from regular patterns in online data can identify offline phenomena</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Jungherr, Andreas</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 1 von 1
VersionDatumZusammenfassung
1*
2016-12-20 11:14:30
* Ausgewählte Version