Visual Analytic Methods for Exploring Large Amounts of Relational Data with Matrix-based Representations

Lade...
Vorschaubild
Dateien
Behrisch_0-400480.pdf
Behrisch_0-400480.pdfGröße: 62.36 MBDownloads: 414
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Relational data is omnipresent in our computerized society and has found its way into our everyday life: Circumstances in social networks, in the transport- and public mains supply, as well as in politics or academics can be modeled with relational data. However, together with the ever growing amount of this data type also novel analysis techniques have to be developed that are able to cope with its demanding size and complexity properties. Typical tasks include not only to visualize the often large and dense data but also to help the analyst to understand relationships if the data set is multivariate or dynamic in nature. Several well-known visualization techniques for relational data exist. For example, node-link diagrams display relationship attributes by drawing edges between nodes with respect to the relationship strength. The layout of nodes helps users to perceive groupings, central items or highly connected items. Matrix-based representations are another means to visualize relational data. This compact representation reaches its technical scalability limit not until all display pixels are occupied. In this doctoral thesis, we will present novel visual interactive techniques, algorithmic approaches and integrated visual analytics systems to support users in navigating and exploring large amounts of relational data. One central research objective is, amongst others, to automatically assess the interestingness of matrix views and show only potentially relevant matrices from a large exploration space to reduce the users’ cognitive overload.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual Analytics, Matrix, Relational Data, Pattern, Pattern-Driven Exploration, Quality Metrics
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BEHRISCH, Michael, 2017. Visual Analytic Methods for Exploring Large Amounts of Relational Data with Matrix-based Representations [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Behrisch2017Visua-38152,
  year={2017},
  title={Visual Analytic Methods for Exploring Large Amounts of Relational Data with Matrix-based Representations},
  author={Behrisch, Michael},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38152">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Behrisch, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38152/3/Behrisch_0-400480.pdf"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-27T09:50:29Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Relational data is omnipresent in our computerized society and has found its way into our everyday life: Circumstances in social networks, in the transport- and public mains supply, as well as in politics or academics can be modeled with relational data. However, together with the ever growing amount of this data type also novel analysis techniques have to be developed that are able to cope with its demanding size and complexity properties. Typical tasks include not only to visualize the often large and dense data but also to help the analyst to understand relationships if the data set is multivariate or dynamic in nature. Several well-known visualization techniques for relational data exist. For example, node-link diagrams display relationship attributes by drawing edges between nodes with respect to the relationship strength. The layout of nodes helps users to perceive groupings, central items or highly connected items. Matrix-based representations are another means to visualize relational data. This compact representation reaches its technical scalability limit not until all display pixels are occupied. In this doctoral thesis, we will present novel visual interactive techniques, algorithmic approaches and integrated visual analytics systems to support users in navigating and exploring large amounts of relational data. One central research objective is, amongst others, to automatically assess the interestingness of matrix views and show only potentially relevant matrices from a large exploration space to reduce the users’ cognitive overload.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38152/3/Behrisch_0-400480.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-27T09:50:29Z</dc:date>
    <dcterms:title>Visual Analytic Methods for Exploring Large Amounts of Relational Data with Matrix-based Representations</dcterms:title>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38152"/>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
February 10, 2017
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2017
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen