Publikation:

Sensitivity analysis for a parametrized model for erythropoiesis involving structured population equations with one structural variable

Lade...
Vorschaubild

Dateien

Binder_0-361615.pdf
Binder_0-361615.pdfGröße: 1.14 MBDownloads: 229

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The base of this master thesis is a hyperbolic partial differential equation (PDE), developed by the Renal Research Institute in New York, USA 2012. The hyperbolic PDE describes the cell population of red blood cells in a specific cell stage (stage of CFU-E cells) depending on the concentration of the hormone erythropoietin (EPO). The model is understood as a parametrized partial differential equation (PPDE). As parameters serve constants, which describe the natural cell death rate and additionally control parameters, which indicate the amount of administered EPO in form of injections. The aim of this work is the sensitivity analysis relating to these parameters. For this purpose, a further parametrized partial differential equation is derived. Its solution describes the sensitivity of the cell population relating to a parameter. Two methods - the finite difference (FD) method and the reduced basis (RB) method - are used to compute a numerical solution of this PPDE. The RBmethod reduces the dimension of the discretization space (of the finite difference method) with a Galerkin method. The reduced basis is generated by a greedy algorithm. Further, an error estimation is used which measures the error between the sensitivities computed by the finite difference method and the sensitivity calculated by the reduced basis method. Next the sensitivities of a linear functional in form of the total cell population and a quadratic cost functional are considered. Additionally, a subset selection method is applied to get a ranking for the parameters according to the degree of their sensitivity. At the end of the thesis the results are presented. Significant differences with regard to the sensitivities of the parameters will be shown. One parameter from the parameter set with the constants is a lot more sensitive than the others and two parameters from the control parameter set with nine parameters are more sensitive. The similar result will be shown for the parameters of the total cell population and of the quadratic cost functional.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

sensitivity analysis, reduced basis, finite difference, parameter, estimator

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BINDER, Felicitas, 2016. Sensitivity analysis for a parametrized model for erythropoiesis involving structured population equations with one structural variable [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Binder2016Sensi-35329,
  year={2016},
  title={Sensitivity analysis for a parametrized model for erythropoiesis involving structured population equations with one structural variable},
  address={Konstanz},
  school={Universität Konstanz},
  author={Binder, Felicitas},
  note={Masterarbeit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35329">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-19T06:55:53Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35329/3/Binder_0-361615.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Binder, Felicitas</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">The base of this master thesis is a hyperbolic partial differential equation (PDE), developed by the Renal Research Institute in New York, USA 2012. The hyperbolic PDE describes the cell population of red blood cells in a specific cell stage (stage of CFU-E cells) depending on the concentration of the hormone erythropoietin (EPO). The model is understood as a parametrized partial differential equation (PPDE). As parameters serve constants, which describe the natural cell death rate and additionally control parameters, which indicate the amount of administered EPO in form of injections. The aim of this work is the sensitivity analysis relating to these parameters. For this purpose, a further parametrized partial differential equation is derived. Its solution describes the sensitivity of the cell population relating to a parameter. Two methods - the finite difference (FD) method and the reduced basis (RB) method - are used to compute a numerical solution of this PPDE. The RBmethod reduces the dimension of the discretization space (of the finite difference method) with a Galerkin method. The reduced basis is generated by a greedy algorithm. Further, an error estimation is used which measures the error between the sensitivities computed by the finite difference method and the sensitivity calculated by the reduced basis method. Next the sensitivities of a linear functional in form of the total cell population and a quadratic cost functional are considered. Additionally, a subset selection method is applied to get a ranking for the parameters according to the degree of their sensitivity. At the end of the thesis the results are presented. Significant differences with regard to the sensitivities of the parameters will be shown. One parameter from the parameter set with the constants is a lot more sensitive than the others and two parameters from the control parameter set with nine parameters are more sensitive. The similar result will be shown for the parameters of the total cell population and of the quadratic cost functional.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-19T06:55:53Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35329/3/Binder_0-361615.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Sensitivity analysis for a parametrized model for erythropoiesis involving structured population equations with one structural variable</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Binder, Felicitas</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35329"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2016
Finanzierungsart

Kommentar zur Publikation

Masterarbeit
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen