Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads : 2. The Effect of Oxygen, Sulfur, and Selenium as Heteroatom in the Azine Donor

Lade...
Vorschaubild
Datum
2007
Autor:innen
Rawls, Matthew T.
Kollmannsberger, Georg
Elliott, C. Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of physical chemistry : A. 2007, 111(18), pp. 3485-3496. ISSN 1089-5639. eISSN 1520-5215. Available under: doi: 10.1021/jp070221s
Zusammenfassung

Nanosecond time-resolved absorption studies in a magnetic field ranging from 0 to 2.0 T have been performed on a series of covalently linked donor(PXZ)-Ru(bipyridine)3-acceptor(diquat) complexes (D-C2+-A2+). In the PXZ moiety, the heteroatom (X = O (oxygen), T (sulfur), and S (selenium)) is systematically varied to study spin-orbit coupling effects. On the nanosecond time scale, the first detectable photoinduced electron-transfer product after exciting the chromophore C2+ is the charge-separated (CS) state, D+-C2+-A+, where an electron of the PXZ moiety, D, has been transferred to the diquat moiety, A2+. The magnetic-field-dependent kinetic behavior of charge recombination (monoexponential at 0 T progressing to biexponential for all three complexes with increasing field) can be quantitatively modeled by the radical pair relaxation mechanism assuming creation of the CS state with pure triplet spin correlation (3CS). Magnetic-field-independent contributions to the rate constant kr of T± → (T0,S) relaxation are about 4.5 × 105 s-1 for DCA-POZ and -PTZ (due to a vibrational mechanism) and 3.5 × 106 s-1 for DCA-PSZ (due to spin rotational mechanism). Recombination to the singlet ground state is allowed only from the 1CS spin level; spin-forbidden recombination from 3CS seems negligible even for DCA-PSZ. The field dependence of kr (field-dependent recombination) can be decomposed into the contributions of various relaxation mechanisms. For all compounds, the electron spin dipolar coupling relaxation mechanism dominates the field dependence of τslow at fields up to about 100 mT. Spin relaxation due to the g-tensor anisotropy relaxation mechanism accounts for the field dependence of τslow for DCA-PSZ at high fields. For the underlying stochastic process, a very short correlation time of 2 ps has to be assumed, which is tentatively assigned to a flapping motion of the central, nonplanar ring in PSZ. Finally, it has been confirmed by paramagnetic quenching (here Heisenberg exchange) experiments of the magnetic-field effects with TEMPO that all magnetic-field dependencies observed with the present DCA-PSZ systems are indeed due to the magnetic-field dependence of spin relaxation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690RAWLS, Matthew T., Georg KOLLMANNSBERGER, C. Michael ELLIOTT, Ulrich STEINER, 2007. Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads : 2. The Effect of Oxygen, Sulfur, and Selenium as Heteroatom in the Azine Donor. In: Journal of physical chemistry : A. 2007, 111(18), pp. 3485-3496. ISSN 1089-5639. eISSN 1520-5215. Available under: doi: 10.1021/jp070221s
BibTex
@article{Rawls2007Chemi-9658,
  year={2007},
  doi={10.1021/jp070221s},
  title={Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads : 2. The Effect of Oxygen, Sulfur, and Selenium as Heteroatom in the Azine Donor},
  number={18},
  volume={111},
  issn={1089-5639},
  journal={Journal of physical chemistry : A},
  pages={3485--3496},
  author={Rawls, Matthew T. and Kollmannsberger, Georg and Elliott, C. Michael and Steiner, Ulrich}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9658">
    <dc:creator>Rawls, Matthew T.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T18:13:30Z</dc:date>
    <dc:contributor>Rawls, Matthew T.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9658/1/Spin_Chemical_Control_of_Photoinduced_Electron_Transfer_Processes_in_Ruthenium2.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9658/1/Spin_Chemical_Control_of_Photoinduced_Electron_Transfer_Processes_in_Ruthenium2.pdf"/>
    <dc:creator>Steiner, Ulrich</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9658"/>
    <dcterms:title>Spin Chemical Control of Photoinduced Electron-Transfer Processes in Ruthenium(II)-Trisbipyridine-Based Supramolecular Triads : 2. The Effect of Oxygen, Sulfur, and Selenium as Heteroatom in the Azine Donor</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Elliott, C. Michael</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:abstract xml:lang="eng">Nanosecond time-resolved absorption studies in a magnetic field ranging from 0 to 2.0 T have been performed on a series of covalently linked donor(PXZ)-Ru(bipyridine)3-acceptor(diquat) complexes (D-C2+-A2+). In the PXZ moiety, the heteroatom (X = O (oxygen), T (sulfur), and S (selenium)) is systematically varied to study spin-orbit coupling effects. On the nanosecond time scale, the first detectable photoinduced electron-transfer product after exciting the chromophore C2+ is the charge-separated (CS) state, D+-C2+-A+, where an electron of the PXZ moiety, D, has been transferred to the diquat moiety, A2+. The magnetic-field-dependent kinetic behavior of charge recombination (monoexponential at 0 T progressing to biexponential for all three complexes with increasing field) can be quantitatively modeled by the radical pair relaxation mechanism assuming creation of the CS state with pure triplet spin correlation (3CS). Magnetic-field-independent contributions to the rate constant kr of T± → (T0,S) relaxation are about 4.5 × 105 s-1 for DCA-POZ and -PTZ (due to a vibrational mechanism) and 3.5 × 106 s-1 for DCA-PSZ (due to spin rotational mechanism). Recombination to the singlet ground state is allowed only from the 1CS spin level; spin-forbidden recombination from 3CS seems negligible even for DCA-PSZ. The field dependence of kr (field-dependent recombination) can be decomposed into the contributions of various relaxation mechanisms. For all compounds, the electron spin dipolar coupling relaxation mechanism dominates the field dependence of τslow at fields up to about 100 mT. Spin relaxation due to the g-tensor anisotropy relaxation mechanism accounts for the field dependence of τslow for DCA-PSZ at high fields. For the underlying stochastic process, a very short correlation time of 2 ps has to be assumed, which is tentatively assigned to a flapping motion of the central, nonplanar ring in PSZ. Finally, it has been confirmed by paramagnetic quenching (here Heisenberg exchange) experiments of the magnetic-field effects with TEMPO that all magnetic-field dependencies observed with the present DCA-PSZ systems are indeed due to the magnetic-field dependence of spin relaxation.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Kollmannsberger, Georg</dc:creator>
    <dc:contributor>Kollmannsberger, Georg</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2007</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: Journal of physical chemistry : A ; 111 (2007), 18. - S. 3485-3496</dcterms:bibliographicCitation>
    <dc:contributor>Steiner, Ulrich</dc:contributor>
    <dc:contributor>Elliott, C. Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen