On Linear Structure from Motion for Light Field Cameras
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a novel approach to relative pose estimation which is tailored to 4D light field cameras. From the relationships between scene geometry and light field structure and an analysis of the light field projection in terms of Pluecker ray coordinates, we deduce a set of linear constraints on ray space correspondences between a light field camera pair. These can be applied to infer relative pose of the light field cameras and thus obtain a point cloud reconstruction of the scene. While the proposed method has interesting relationships to pose estimation for generalized cameras based on ray-to-ray correspondence, our experiments demonstrate that our approach is both more accurate and computationally more efficient. It also compares favourably to direct linear pose estimation based on aligning the 3D point clouds obtained by reconstructing depth for each individual light field. To further validate the method, we employ the pose estimates to merge light fields captured with hand-held consumer light field cameras into refocusable panoramas.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JOHANNSEN, Ole, Antonin SULC, Bastian GOLDLÜCKE, 2015. On Linear Structure from Motion for Light Field Cameras. IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, 7. Dez. 2015 - 13. Dez. 2015. In: 2015 IEEE International Conference on Computer Vision : ICCV 2015 : proceedings : 7.-13. Dec. 2015, Santiago, Chile. Los Alamitos, California: IEEE, 2015, pp. 720-728. ISBN 978-1-4673-8391-2. Available under: doi: 10.1109/ICCV.2015.89BibTex
@inproceedings{Johannsen2015-12Linea-33509, year={2015}, doi={10.1109/ICCV.2015.89}, title={On Linear Structure from Motion for Light Field Cameras}, isbn={978-1-4673-8391-2}, publisher={IEEE}, address={Los Alamitos, California}, booktitle={2015 IEEE International Conference on Computer Vision : ICCV 2015 : proceedings : 7.-13. Dec. 2015, Santiago, Chile}, pages={720--728}, author={Johannsen, Ole and Sulc, Antonin and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33509"> <dc:creator>Goldlücke, Bastian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T14:03:07Z</dcterms:available> <dcterms:title>On Linear Structure from Motion for Light Field Cameras</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T14:03:07Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33509"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Johannsen, Ole</dc:contributor> <dc:creator>Sulc, Antonin</dc:creator> <dcterms:abstract xml:lang="eng">We present a novel approach to relative pose estimation which is tailored to 4D light field cameras. From the relationships between scene geometry and light field structure and an analysis of the light field projection in terms of Pluecker ray coordinates, we deduce a set of linear constraints on ray space correspondences between a light field camera pair. These can be applied to infer relative pose of the light field cameras and thus obtain a point cloud reconstruction of the scene. While the proposed method has interesting relationships to pose estimation for generalized cameras based on ray-to-ray correspondence, our experiments demonstrate that our approach is both more accurate and computationally more efficient. It also compares favourably to direct linear pose estimation based on aligning the 3D point clouds obtained by reconstructing depth for each individual light field. To further validate the method, we employ the pose estimates to merge light fields captured with hand-held consumer light field cameras into refocusable panoramas.</dcterms:abstract> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:contributor>Sulc, Antonin</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Johannsen, Ole</dc:creator> <dcterms:issued>2015-12</dcterms:issued> </rdf:Description> </rdf:RDF>