SocialOcean : Visual Analysis and Characterization of Social Media Bubbles
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Social media allows citizens, corporations, and authorities to create, post, and exchange information. The study of its dynamics will enable analysts to understand user activities and social group characteristics such as connectedness, geospatial distribution, and temporal behavior. In this context, social media bubbles can be defined as social groups that exhibit certain biases in social media. These biases strongly depend on the dimensions selected in the analysis, for example, topic affinity, credibility, sentiment, and geographic distribution. In this paper, we present SocialOcean, a visual analytics system that allows for the investigation of social media bubbles. There exists a large body of research in social sciences which identifies important dimensions of social media bubbles (SMBs). While such dimensions have been studied separately, and also some of them in combination, it is still an open question which dimensions play the most important role in defining SMBs. Since the concept of SMBs is fairly recent, there are many unknowns regarding their characterization. We investigate the thematic and spatiotemporal characteristics of SMBs and present a visual analytics system to address questions such as: What are the most important dimensions that characterize SMBs? and How SMBs embody in the presence of specific events that resonate with them? We illustrate our approach using three different real scenarios related to the single event of Boston Marathon Bombing, and political news about Global Warming. We perform an expert evaluation, analyze the experts' feedback, and present the lessons learned.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIEHL, Alexandra, Michael HUNDT, Johannes HÄUSSLER, Daniel SEEBACHER, Siming CHEN, Nida CILASUN, Daniel A. KEIM, Tobias SCHRECK, 2018. SocialOcean : Visual Analysis and Characterization of Social Media Bubbles. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, Germany, 17. Okt. 2018 - 19. Okt. 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ: IEEE, 2018. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534023BibTex
@inproceedings{Diehl2018Socia-44990, year={2018}, doi={10.1109/BDVA.2018.8534023}, title={SocialOcean : Visual Analysis and Characterization of Social Media Bubbles}, isbn={978-1-5386-9194-6}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)}, author={Diehl, Alexandra and Hundt, Michael and Häußler, Johannes and Seebacher, Daniel and Chen, Siming and Cilasun, Nida and Keim, Daniel A. and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44990"> <dc:contributor>Cilasun, Nida</dc:contributor> <dcterms:abstract xml:lang="eng">Social media allows citizens, corporations, and authorities to create, post, and exchange information. The study of its dynamics will enable analysts to understand user activities and social group characteristics such as connectedness, geospatial distribution, and temporal behavior. In this context, social media bubbles can be defined as social groups that exhibit certain biases in social media. These biases strongly depend on the dimensions selected in the analysis, for example, topic affinity, credibility, sentiment, and geographic distribution. In this paper, we present SocialOcean, a visual analytics system that allows for the investigation of social media bubbles. There exists a large body of research in social sciences which identifies important dimensions of social media bubbles (SMBs). While such dimensions have been studied separately, and also some of them in combination, it is still an open question which dimensions play the most important role in defining SMBs. Since the concept of SMBs is fairly recent, there are many unknowns regarding their characterization. We investigate the thematic and spatiotemporal characteristics of SMBs and present a visual analytics system to address questions such as: What are the most important dimensions that characterize SMBs? and How SMBs embody in the presence of specific events that resonate with them? We illustrate our approach using three different real scenarios related to the single event of Boston Marathon Bombing, and political news about Global Warming. We perform an expert evaluation, analyze the experts' feedback, and present the lessons learned.</dcterms:abstract> <dc:creator>Hundt, Michael</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Häußler, Johannes</dc:contributor> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-12T12:22:27Z</dc:date> <dc:creator>Häußler, Johannes</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Diehl, Alexandra</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>SocialOcean : Visual Analysis and Characterization of Social Media Bubbles</dcterms:title> <dc:contributor>Chen, Siming</dc:contributor> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-12T12:22:27Z</dcterms:available> <dc:creator>Chen, Siming</dc:creator> <dc:creator>Cilasun, Nida</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44990"/> <dc:creator>Diehl, Alexandra</dc:creator> <dc:contributor>Hundt, Michael</dc:contributor> </rdf:Description> </rdf:RDF>