Publikation:

Applications of WKB and Fokker–Planck Methods in Analyzing Population Extinction Driven by Weak Demographic Fluctuations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bulletin of Mathematical Biology. Springer. 2019, 81(11), S. 4840-4855. ISSN 0092-8240. eISSN 1522-9602. Verfügbar unter: doi: 10.1007/s11538-018-0483-6

Zusammenfassung

In large but finite populations, weak demographic stochasticity due to random birth and death events can lead to population extinction. The process is analogous to the escaping problem of trapped particles under random forces. Methods widely used in studying such physical systems, for instance, Wentzel–Kramers–Brillouin (WKB) and Fokker–Planck methods, can be applied to solve similar biological problems. In this article, we comparatively analyse applications of WKB and Fokker–Planck methods to some typical stochastic population dynamical models, including the logistic growth, endemic SIR, predator-prey, and competitive Lotka–Volterra models. The mean extinction time strongly depends on the nature of the corresponding deterministic fixed point(s). For different types of fixed points, the extinction can be driven either by rare events or typical Gaussian fluctuations. In the former case, the large deviation function that governs the distribution of rare events can be well-approximated by the WKB method in the weak noise limit. In the later case, the simpler Fokker–Planck approximation approach is also appropriate.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Demographic stochasticity, Fokker–Planck equation, Mean extinction time, WKB

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690YU, Xiaoquan, Xiang-Yi LI RICHTER, 2019. Applications of WKB and Fokker–Planck Methods in Analyzing Population Extinction Driven by Weak Demographic Fluctuations. In: Bulletin of Mathematical Biology. Springer. 2019, 81(11), S. 4840-4855. ISSN 0092-8240. eISSN 1522-9602. Verfügbar unter: doi: 10.1007/s11538-018-0483-6
BibTex
@article{Yu2019-11Appli-73140,
  title={Applications of WKB and Fokker–Planck Methods in Analyzing Population Extinction Driven by Weak Demographic Fluctuations},
  year={2019},
  doi={10.1007/s11538-018-0483-6},
  number={11},
  volume={81},
  issn={0092-8240},
  journal={Bulletin of Mathematical Biology},
  pages={4840--4855},
  author={Yu, Xiaoquan and Li Richter, Xiang-Yi}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73140">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Li Richter, Xiang-Yi</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Yu, Xiaoquan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T10:35:30Z</dcterms:available>
    <dc:creator>Yu, Xiaoquan</dc:creator>
    <dcterms:title>Applications of WKB and Fokker–Planck Methods in Analyzing Population Extinction Driven by Weak Demographic Fluctuations</dcterms:title>
    <dcterms:abstract>In large but finite populations, weak demographic stochasticity due to random birth and death events can lead to population extinction. The process is analogous to the escaping problem of trapped particles under random forces. Methods widely used in studying such physical systems, for instance, Wentzel–Kramers–Brillouin (WKB) and Fokker–Planck methods, can be applied to solve similar biological problems. In this article, we comparatively analyse applications of WKB and Fokker–Planck methods to some typical stochastic population dynamical models, including the logistic growth, endemic SIR, predator-prey, and competitive Lotka–Volterra models. The mean extinction time strongly depends on the nature of the corresponding deterministic fixed point(s). For different types of fixed points, the extinction can be driven either by rare events or typical Gaussian fluctuations. In the former case, the large deviation function that governs the distribution of rare events can be well-approximated by the WKB method in the weak noise limit. In the later case, the simpler Fokker–Planck approximation approach is also appropriate.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73140"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2019-11</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T10:35:30Z</dc:date>
    <dc:creator>Li Richter, Xiang-Yi</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen