HD-Eye : Visual Clustering of High-Dimensional Data
HD-Eye : Visual Clustering of High-Dimensional Data
Loading...
Date
2002
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published in
Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. - New York, New York, USA : ACM Press, 2002. - pp. 629. - ISBN 1-58113-497-5
Abstract
Clustering of large data bases is an important research area with a large variety of applications in the data base context. Missing in most of the research efforts are means for guiding the clustering process and understanding the results, which is especially important for high dimensional data. Visualization technology may help to solve this problem since it provides effective support of different clustering paradigms and allows a visual inspection of the results. The HD-Eye (high-dim. eye) system shows that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques is powerful for a better understanding and effective guidance of the clustering process, and therefore can help to significantly improve the clustering results.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
the 2002 ACM SIGMOD international conference, Jun 3, 2002 - Jun 6, 2002, Madison, Wisconsin
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HINNEBURG, Alexander, Daniel A. KEIM, Markus WAWRYNIUK, 2002. HD-Eye : Visual Clustering of High-Dimensional Data. the 2002 ACM SIGMOD international conference. Madison, Wisconsin, Jun 3, 2002 - Jun 6, 2002. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. New York, New York, USA:ACM Press, pp. 629. ISBN 1-58113-497-5. Available under: doi: 10.1145/564691.564784BibTex
@inproceedings{Hinneburg2002HDEye-5588, year={2002}, doi={10.1145/564691.564784}, title={HD-Eye : Visual Clustering of High-Dimensional Data}, isbn={1-58113-497-5}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02}, author={Hinneburg, Alexander and Keim, Daniel A. and Wawryniuk, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5588"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5588"/> <dcterms:abstract xml:lang="eng">Clustering of large data bases is an important research area with a large variety of applications in the data base context. Missing in most of the research efforts are means for guiding the clustering process and understanding the results, which is especially important for high dimensional data. Visualization technology may help to solve this problem since it provides effective support of different clustering paradigms and allows a visual inspection of the results. The HD-Eye (high-dim. eye) system shows that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques is powerful for a better understanding and effective guidance of the clustering process, and therefore can help to significantly improve the clustering results.</dcterms:abstract> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dc:creator>Hinneburg, Alexander</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5588/1/HD_Eye.pdf"/> <dc:creator>Wawryniuk, Markus</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:language>eng</dc:language> <dcterms:issued>2002</dcterms:issued> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5588/1/HD_Eye.pdf"/> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:37Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>HD-Eye : Visual Clustering of High-Dimensional Data</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:bibliographicCitation>First publ. in: Proceedings of the ACM SIGMOD International Conference on Management of Data, June 3 - 6, 2002, Madison / ed. by Michael Franklin ... New York: ACM Pr., 2002, pp. 629-629</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:37Z</dc:date> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No