HD-Eye : Visual Clustering of High-Dimensional Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Clustering of large data bases is an important research area with a large variety of applications in the data base context. Missing in most of the research efforts are means for guiding the clustering process and understanding the results, which is especially important for high dimensional data. Visualization technology may help to solve this problem since it provides effective support of different clustering paradigms and allows a visual inspection of the results. The HD-Eye (high-dim. eye) system shows that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques is powerful for a better understanding and effective guidance of the clustering process, and therefore can help to significantly improve the clustering results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HINNEBURG, Alexander, Daniel A. KEIM, Markus WAWRYNIUK, 2002. HD-Eye : Visual Clustering of High-Dimensional Data. the 2002 ACM SIGMOD international conference. Madison, Wisconsin, 3. Juni 2002 - 6. Juni 2002. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. New York, New York, USA: ACM Press, 2002, pp. 629. ISBN 1-58113-497-5. Available under: doi: 10.1145/564691.564784BibTex
@inproceedings{Hinneburg2002HDEye-5588, year={2002}, doi={10.1145/564691.564784}, title={HD-Eye : Visual Clustering of High-Dimensional Data}, isbn={1-58113-497-5}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02}, author={Hinneburg, Alexander and Keim, Daniel A. and Wawryniuk, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5588"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5588"/> <dcterms:abstract xml:lang="eng">Clustering of large data bases is an important research area with a large variety of applications in the data base context. Missing in most of the research efforts are means for guiding the clustering process and understanding the results, which is especially important for high dimensional data. Visualization technology may help to solve this problem since it provides effective support of different clustering paradigms and allows a visual inspection of the results. The HD-Eye (high-dim. eye) system shows that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques is powerful for a better understanding and effective guidance of the clustering process, and therefore can help to significantly improve the clustering results.</dcterms:abstract> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dc:creator>Hinneburg, Alexander</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5588/1/HD_Eye.pdf"/> <dc:creator>Wawryniuk, Markus</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:language>eng</dc:language> <dcterms:issued>2002</dcterms:issued> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5588/1/HD_Eye.pdf"/> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:37Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>HD-Eye : Visual Clustering of High-Dimensional Data</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:bibliographicCitation>First publ. in: Proceedings of the ACM SIGMOD International Conference on Management of Data, June 3 - 6, 2002, Madison / ed. by Michael Franklin ... New York: ACM Pr., 2002, pp. 629-629</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:37Z</dc:date> </rdf:Description> </rdf:RDF>