HD-Eye : Visual Clustering of High-Dimensional Data

Lade...
Vorschaubild
Dateien
HD_Eye.pdf
HD_Eye.pdfGröße: 135.37 KBDownloads: 503
Datum
2002
Autor:innen
Hinneburg, Alexander
Wawryniuk, Markus
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. New York, New York, USA: ACM Press, 2002, pp. 629. ISBN 1-58113-497-5. Available under: doi: 10.1145/564691.564784
Zusammenfassung

Clustering of large data bases is an important research area with a large variety of applications in the data base context. Missing in most of the research efforts are means for guiding the clustering process and understanding the results, which is especially important for high dimensional data. Visualization technology may help to solve this problem since it provides effective support of different clustering paradigms and allows a visual inspection of the results. The HD-Eye (high-dim. eye) system shows that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques is powerful for a better understanding and effective guidance of the clustering process, and therefore can help to significantly improve the clustering results.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
the 2002 ACM SIGMOD international conference, 3. Juni 2002 - 6. Juni 2002, Madison, Wisconsin
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HINNEBURG, Alexander, Daniel A. KEIM, Markus WAWRYNIUK, 2002. HD-Eye : Visual Clustering of High-Dimensional Data. the 2002 ACM SIGMOD international conference. Madison, Wisconsin, 3. Juni 2002 - 6. Juni 2002. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. New York, New York, USA: ACM Press, 2002, pp. 629. ISBN 1-58113-497-5. Available under: doi: 10.1145/564691.564784
BibTex
@inproceedings{Hinneburg2002HDEye-5588,
  year={2002},
  doi={10.1145/564691.564784},
  title={HD-Eye : Visual Clustering of High-Dimensional Data},
  isbn={1-58113-497-5},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the 2002 ACM SIGMOD international conference on Management of data  - SIGMOD '02},
  author={Hinneburg, Alexander and Keim, Daniel A. and Wawryniuk, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5588">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5588"/>
    <dcterms:abstract xml:lang="eng">Clustering of large data bases is an important research area with a large variety of applications in the data base context. Missing in most of the research efforts are means for guiding the clustering process and understanding the results, which is especially important for high dimensional data. Visualization technology may help to solve this problem since it provides effective support of different clustering paradigms and allows a visual inspection of the results. The HD-Eye (high-dim. eye) system shows that a tight integration of advanced clustering algorithms and state-of-the-art visualization techniques is powerful for a better understanding and effective guidance of the clustering process, and therefore can help to significantly improve the clustering results.</dcterms:abstract>
    <dc:contributor>Hinneburg, Alexander</dc:contributor>
    <dc:creator>Hinneburg, Alexander</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5588/1/HD_Eye.pdf"/>
    <dc:creator>Wawryniuk, Markus</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:issued>2002</dcterms:issued>
    <dc:format>application/pdf</dc:format>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5588/1/HD_Eye.pdf"/>
    <dc:contributor>Wawryniuk, Markus</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:37Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>HD-Eye : Visual Clustering of High-Dimensional Data</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the ACM SIGMOD International Conference on Management of Data, June 3 - 6, 2002, Madison / ed. by Michael Franklin ... New York: ACM Pr., 2002, pp. 629-629</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:37Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen