Publikation:

CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data

Lade...
Vorschaubild

Dateien

Guenzel_2-4fj6qc0424g11.pdf
Guenzel_2-4fj6qc0424g11.pdfGröße: 2.98 MBDownloads: 30

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117 – 422037984

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

NeuroImage. Elsevier. 2024, 298, 120758. ISSN 1053-8119. eISSN 1095-9572. Verfügbar unter: doi: 10.1016/j.neuroimage.2024.120758

Zusammenfassung

Recent advances in calcium imaging, including the development of fast and sensitive genetically encoded indicators, high-resolution camera chips for wide-field imaging, and resonant scanning mirrors in laser scanning microscopy, have notably improved the temporal and spatial resolution of functional imaging analysis. Nonetheless, the variability of imaging approaches and brain structures challenges the development of versatile and reliable segmentation methods. Standard techniques, such as manual selection of regions of interest or machine learning solutions, often fall short due to either user bias, non-transferability among systems, or computational demand. To overcome these issues, we developed CalciSeg, a data-driven and reproducible approach for unsupervised functional calcium imaging data segmentation. CalciSeg addresses the challenges associated with brain structure variability and user bias by offering a computationally efficient solution for automatic image segmentation based on two parameters: regions’ size limits and number of refinement iterations. We evaluated CalciSeg efficacy on datasets of varied complexity, different insect species (locusts, bees, and cockroaches), and imaging systems (wide-field, confocal, and multiphoton), showing the robustness and generality of our approach. Finally, the user-friendly nature and the open-source availability of CalciSeg facilitate the integration of this algorithm into existing analysis pipelines.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GÜNZEL, Yannick, Einat COUZIN-FUCHS, Marco PAOLI, 2024. CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data. In: NeuroImage. Elsevier. 2024, 298, 120758. ISSN 1053-8119. eISSN 1095-9572. Verfügbar unter: doi: 10.1016/j.neuroimage.2024.120758
BibTex
@article{Gunzel2024-09Calci-70543,
  year={2024},
  doi={10.1016/j.neuroimage.2024.120758},
  title={CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data},
  volume={298},
  issn={1053-8119},
  journal={NeuroImage},
  author={Günzel, Yannick and Couzin-Fuchs, Einat and Paoli, Marco},
  note={Article Number: 120758}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70543">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T12:52:21Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>Recent advances in calcium imaging, including the development of fast and sensitive genetically encoded indicators, high-resolution camera chips for wide-field imaging, and resonant scanning mirrors in laser scanning microscopy, have notably improved the temporal and spatial resolution of functional imaging analysis. Nonetheless, the variability of imaging approaches and brain structures challenges the development of versatile and reliable segmentation methods. Standard techniques, such as manual selection of regions of interest or machine learning solutions, often fall short due to either user bias, non-transferability among systems, or computational demand. To overcome these issues, we developed CalciSeg, a data-driven and reproducible approach for unsupervised functional calcium imaging data segmentation. CalciSeg addresses the challenges associated with brain structure variability and user bias by offering a computationally efficient solution for automatic image segmentation based on two parameters: regions’ size limits and number of refinement iterations. We evaluated CalciSeg efficacy on datasets of varied complexity, different insect species (locusts, bees, and cockroaches), and imaging systems (wide-field, confocal, and multiphoton), showing the robustness and generality of our approach. Finally, the user-friendly nature and the open-source availability of CalciSeg facilitate the integration of this algorithm into existing analysis pipelines.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:contributor>Couzin-Fuchs, Einat</dc:contributor>
    <dc:contributor>Paoli, Marco</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Günzel, Yannick</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70543"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70543/1/Guenzel_2-4fj6qc0424g11.pdf"/>
    <dc:creator>Paoli, Marco</dc:creator>
    <dc:creator>Couzin-Fuchs, Einat</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2024-09</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70543/1/Guenzel_2-4fj6qc0424g11.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T12:52:21Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Günzel, Yannick</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen