CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): EXC 2117 – 422037984
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
NeuroImage. Elsevier. 2024, 298, 120758. ISSN 1053-8119. eISSN 1095-9572. Verfügbar unter: doi: 10.1016/j.neuroimage.2024.120758
Zusammenfassung

Recent advances in calcium imaging, including the development of fast and sensitive genetically encoded indicators, high-resolution camera chips for wide-field imaging, and resonant scanning mirrors in laser scanning microscopy, have notably improved the temporal and spatial resolution of functional imaging analysis. Nonetheless, the variability of imaging approaches and brain structures challenges the development of versatile and reliable segmentation methods. Standard techniques, such as manual selection of regions of interest or machine learning solutions, often fall short due to either user bias, non-transferability among systems, or computational demand. To overcome these issues, we developed CalciSeg, a data-driven and reproducible approach for unsupervised functional calcium imaging data segmentation. CalciSeg addresses the challenges associated with brain structure variability and user bias by offering a computationally efficient solution for automatic image segmentation based on two parameters: regions’ size limits and number of refinement iterations. We evaluated CalciSeg efficacy on datasets of varied complexity, different insect species (locusts, bees, and cockroaches), and imaging systems (wide-field, confocal, and multiphoton), showing the robustness and generality of our approach. Finally, the user-friendly nature and the open-source availability of CalciSeg facilitate the integration of this algorithm into existing analysis pipelines.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690GÜNZEL, Yannick, Einat COUZIN-FUCHS, Marco PAOLI, 2024. CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data. In: NeuroImage. Elsevier. 2024, 298, 120758. ISSN 1053-8119. eISSN 1095-9572. Verfügbar unter: doi: 10.1016/j.neuroimage.2024.120758
BibTex
@article{Gunzel2024-09Calci-70543,
  year={2024},
  doi={10.1016/j.neuroimage.2024.120758},
  title={CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data},
  volume={298},
  issn={1053-8119},
  journal={NeuroImage},
  author={Günzel, Yannick and Couzin-Fuchs, Einat and Paoli, Marco},
  note={Article Number: 120758}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70543">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T12:52:21Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>Recent advances in calcium imaging, including the development of fast and sensitive genetically encoded indicators, high-resolution camera chips for wide-field imaging, and resonant scanning mirrors in laser scanning microscopy, have notably improved the temporal and spatial resolution of functional imaging analysis. Nonetheless, the variability of imaging approaches and brain structures challenges the development of versatile and reliable segmentation methods. Standard techniques, such as manual selection of regions of interest or machine learning solutions, often fall short due to either user bias, non-transferability among systems, or computational demand. To overcome these issues, we developed CalciSeg, a data-driven and reproducible approach for unsupervised functional calcium imaging data segmentation. CalciSeg addresses the challenges associated with brain structure variability and user bias by offering a computationally efficient solution for automatic image segmentation based on two parameters: regions’ size limits and number of refinement iterations. We evaluated CalciSeg efficacy on datasets of varied complexity, different insect species (locusts, bees, and cockroaches), and imaging systems (wide-field, confocal, and multiphoton), showing the robustness and generality of our approach. Finally, the user-friendly nature and the open-source availability of CalciSeg facilitate the integration of this algorithm into existing analysis pipelines.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:contributor>Couzin-Fuchs, Einat</dc:contributor>
    <dc:contributor>Paoli, Marco</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Günzel, Yannick</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70543"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Paoli, Marco</dc:creator>
    <dc:creator>Couzin-Fuchs, Einat</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2024-09</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T12:52:21Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>CalciSeg : A versatile approach for unsupervised segmentation of calcium imaging data</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Günzel, Yannick</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen