How to make methodological decisions when inferring social networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Social network analyses allow studying the processes underlying the associations between individuals and the consequences of those associations. Constructing and analysing social networks data can be challenging, especially when designing new studies as researchers are confronted with decisions about how to collect data and construct networks, and the answers are not always straightforward. The current lack of guidance on building a social network for a new study system might lead researchers to try several different methods, and risk generating false results arising from multiple hypotheses testing. Here, we suggest an approach for making decisions when starting social network research in a new study system that avoids the pitfall of multiple hypotheses testing. We argue that best edge definition for a network is a decision that can be made using a priori knowledge about the species, and that is independent from the hypotheses that the network will ultimately be used to evaluate. We illustrate this approach with a study conducted on a colonial cooperatively breeding bird, the sociable weaver. We first identified two ways of collecting data using different numbers of feeders and three ways to define associations among birds. We then evaluated which combination of data collection and association definition maximised (i) the assortment of individuals into previously known ‘breeding groups’ (birds that contribute towards the same nest and maintain cohesion when foraging), and (ii) socially differentiated relationships (more strong and weak relationships than expected by chance). This evaluation of different methods based on a priori knowledge of the study species can be implemented in a diverse array of study systems and makes the case for using existing, biologically meaningful knowledge about a system to help navigate the myriad of methodological decisions about data collection and network inference.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FERREIRA, André C., Rita COVAS, Liliana R. SILVA, Sandra C. ESTEVES, Inês F. DUARTE, Frank THERON, Claire DOUTRELANT, Damien R. FARINE, 2020. How to make methodological decisions when inferring social networks. In: Ecology and Evolution. Wiley. 2020, 10(17), pp. 9132-9143. eISSN 2045-7758. Available under: doi: 10.1002/ece3.6568BibTex
@article{Ferreira2020metho-50103, year={2020}, doi={10.1002/ece3.6568}, title={How to make methodological decisions when inferring social networks}, number={17}, volume={10}, journal={Ecology and Evolution}, pages={9132--9143}, author={Ferreira, André C. and Covas, Rita and Silva, Liliana R. and Esteves, Sandra C. and Duarte, Inês F. and Theron, Frank and Doutrelant, Claire and Farine, Damien R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50103"> <dc:creator>Covas, Rita</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Silva, Liliana R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Social network analyses allow studying the processes underlying the associations between individuals and the consequences of those associations. Constructing and analysing social networks data can be challenging, especially when designing new studies as researchers are confronted with decisions about how to collect data and construct networks, and the answers are not always straightforward. The current lack of guidance on building a social network for a new study system might lead researchers to try several different methods, and risk generating false results arising from multiple hypotheses testing. Here, we suggest an approach for making decisions when starting social network research in a new study system that avoids the pitfall of multiple hypotheses testing. We argue that best edge definition for a network is a decision that can be made using a priori knowledge about the species, and that is independent from the hypotheses that the network will ultimately be used to evaluate. We illustrate this approach with a study conducted on a colonial cooperatively breeding bird, the sociable weaver. We first identified two ways of collecting data using different numbers of feeders and three ways to define associations among birds. We then evaluated which combination of data collection and association definition maximised (i) the assortment of individuals into previously known ‘breeding groups’ (birds that contribute towards the same nest and maintain cohesion when foraging), and (ii) socially differentiated relationships (more strong and weak relationships than expected by chance). This evaluation of different methods based on a priori knowledge of the study species can be implemented in a diverse array of study systems and makes the case for using existing, biologically meaningful knowledge about a system to help navigate the myriad of methodological decisions about data collection and network inference.</dcterms:abstract> <dc:contributor>Duarte, Inês F.</dc:contributor> <dc:creator>Theron, Frank</dc:creator> <dc:creator>Farine, Damien R.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Theron, Frank</dc:contributor> <dc:contributor>Esteves, Sandra C.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Ferreira, André C.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-02T11:57:35Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50103"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>How to make methodological decisions when inferring social networks</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-02T11:57:35Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Duarte, Inês F.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50103/3/Ferreira_2-4dbkppuaxnkt1.pdf"/> <dc:creator>Esteves, Sandra C.</dc:creator> <dc:contributor>Farine, Damien R.</dc:contributor> <dc:contributor>Covas, Rita</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Doutrelant, Claire</dc:contributor> <dc:creator>Silva, Liliana R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50103/3/Ferreira_2-4dbkppuaxnkt1.pdf"/> <dc:creator>Ferreira, André C.</dc:creator> <dc:creator>Doutrelant, Claire</dc:creator> </rdf:Description> </rdf:RDF>