Quadratic modules of polynomials in two variables

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Autor:innen
Cabral, Eugenia
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advances in Geometry. 2008, 8(2), pp. 189-204. Available under: doi: 10.1515/ADVGEOM.2008.014
Zusammenfassung

Let h1, , R[X, Y] and assume that the set W (h) := {(a, b) 2 | hi(a, b) ≥ 0 for all 1 ≤ i ≤ s} is compact and non-empty. We give an effective method to decide from the knowledge of h1, , hs whether every polynomial R[X, Y], strictly positive on W(h), has a representation f = σ0 + h1σ1 +···+ hsσs with each σi being a sum of squares in R[X, Y].

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PRESTEL, Alexander, Eugenia CABRAL, 2008. Quadratic modules of polynomials in two variables. In: Advances in Geometry. 2008, 8(2), pp. 189-204. Available under: doi: 10.1515/ADVGEOM.2008.014
BibTex
@article{Prestel2008Quadr-790,
  year={2008},
  doi={10.1515/ADVGEOM.2008.014},
  title={Quadratic modules of polynomials in two variables},
  number={2},
  volume={8},
  journal={Advances in Geometry},
  pages={189--204},
  author={Prestel, Alexander and Cabral, Eugenia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/790">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Prestel, Alexander</dc:creator>
    <dc:contributor>Cabral, Eugenia</dc:contributor>
    <dcterms:title>Quadratic modules of polynomials in two variables</dcterms:title>
    <dcterms:issued>2008</dcterms:issued>
    <dc:creator>Cabral, Eugenia</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: Advances in Geometry 8 (2008), 2, pp. 189 204</dcterms:bibliographicCitation>
    <dc:contributor>Prestel, Alexander</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:54Z</dc:date>
    <dcterms:abstract xml:lang="eng">Let h1, , R[X, Y] and assume that the set W (h) := {(a, b)  2 | hi(a, b) ≥ 0 for all 1 ≤ i ≤ s} is compact and non-empty. We give an effective method to decide from the knowledge of h1, , hs whether every polynomial R[X, Y], strictly positive on W(h), has a representation f = σ0 + h1σ1 +···+ hsσs with each σi being a sum of squares in R[X, Y].</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/790"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:54Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen