Evaluating Semantic Relations in Predicting Textual Labels for Images of Abstract and Concrete Concepts
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This study investigates the performance of SigLIP, a state-of-the-art Vision-Language Model (VLM), in predicting labels for images depicting 1,278 concepts. Our analysis across 300 images per concept shows that the model frequently predicts the exact user-tagged labels, but similarly, it often predicts labels that are semantically related to the exact labels in various ways: synonyms, hypernyms, co-hyponyms, and associated words, particularly for abstract concepts. We then zoom into the diversity of the user tags of images and word associations for abstract versus concrete concepts. Surprisingly, not only abstract but also concrete concepts exhibit significant variability, thus challenging the traditional view that representations of concrete concepts are less diverse.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TATER, Tarun, Sabine SCHULTE IM WALDE, Diego FRASSINELLI, 2024. Evaluating Semantic Relations in Predicting Textual Labels for Images of Abstract and Concrete Concepts. The 13th edition of the Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2024). Bangkok, Thailand, 15. Aug. 2024 - 15. Aug. 2024. In: KURIBAYASHI, Tatsuki, Hrsg., Giulia RAMBELLI, Hrsg., Ece TAKMAZ, Hrsg. und andere. Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics. Kerrville, TX, USA: Association for Computational Linguistics, 2024, S. 214-220. ISBN 979-8-89176-143-8BibTex
@inproceedings{Tater2024Evalu-70689, year={2024}, title={Evaluating Semantic Relations in Predicting Textual Labels for Images of Abstract and Concrete Concepts}, url={https://aclanthology.org/2024.cmcl-1.18}, isbn={979-8-89176-143-8}, publisher={Association for Computational Linguistics}, address={Kerrville, TX, USA}, booktitle={Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics}, pages={214--220}, editor={Kuribayashi, Tatsuki and Rambelli, Giulia and Takmaz, Ece}, author={Tater, Tarun and Schulte Im Walde, Sabine and Frassinelli, Diego} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70689"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-30T10:54:04Z</dcterms:available> <dc:creator>Frassinelli, Diego</dc:creator> <dcterms:title>Evaluating Semantic Relations in Predicting Textual Labels for Images of Abstract and Concrete Concepts</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70689/4/Tater_2-4422lpahfzt56.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70689/4/Tater_2-4422lpahfzt56.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:abstract>This study investigates the performance of SigLIP, a state-of-the-art Vision-Language Model (VLM), in predicting labels for images depicting 1,278 concepts. Our analysis across 300 images per concept shows that the model frequently predicts the exact user-tagged labels, but similarly, it often predicts labels that are semantically related to the exact labels in various ways: synonyms, hypernyms, co-hyponyms, and associated words, particularly for abstract concepts. We then zoom into the diversity of the user tags of images and word associations for abstract versus concrete concepts. Surprisingly, not only abstract but also concrete concepts exhibit significant variability, thus challenging the traditional view that representations of concrete concepts are less diverse.</dcterms:abstract> <dc:contributor>Schulte Im Walde, Sabine</dc:contributor> <dcterms:issued>2024</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-30T10:54:04Z</dc:date> <dc:contributor>Frassinelli, Diego</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Tater, Tarun</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70689"/> <dc:contributor>Tater, Tarun</dc:contributor> <dc:creator>Schulte Im Walde, Sabine</dc:creator> </rdf:Description> </rdf:RDF>