Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges

Lade...
Vorschaubild
Dateien
El-Assady_0-305819.pdf
El-Assady_0-305819.pdfGröße: 683.78 KBDownloads: 319
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings. 2014
Zusammenfassung

We present two original approaches for visual-interactive prediction of user movie ratings and box office gross after the opening weekend, as designed and awarded during VAST Challenge 2013. Our approaches are driven by machine learning models and interactive data exploration, respectively. They consider an array of different training data types, including categorical/discrete data, time series data, and sentiment data from social media. The two approaches are only first steps towards visual-interactive prediction, but have shown to deliver improved prediction results as compared to baseline non-interactive prediction, and may serve as starting points for other predictive applications. Furthermore, an abstract workflow for predictive visual analytics is derived. We also discuss promising challenges for future research in visual-interactive predictive analysis, including design space, evaluation, and model visualization.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual Analytics, Interactive Prediction, System Design, Evaluation
Konferenz
An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics, 9. Nov. 2014 - 9. Nov. 2014, Paris
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690EL-ASSADY, Mennatallah, Wolfgang JENTNER, Manuel STEIN, Fabian FISCHER, Tobias SCHRECK, Daniel A. KEIM, 2014. Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges. An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics. Paris, 9. Nov. 2014 - 9. Nov. 2014. In: An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings. 2014
BibTex
@inproceedings{ElAssady2014Predi-32741,
  year={2014},
  title={Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges},
  url={http://predictive-workshop.github.io/papers/vpa2014_8.pdf},
  booktitle={An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings},
  author={El-Assady, Mennatallah and Jentner, Wolfgang and Stein, Manuel and Fischer, Fabian and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32741">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32741/1/El-Assady_0-305819.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:abstract xml:lang="eng">We present two original approaches for visual-interactive prediction of user movie ratings and box office gross after the opening weekend, as designed and awarded during VAST Challenge 2013. Our approaches are driven by machine learning models and interactive data exploration, respectively. They consider an array of different training data types, including categorical/discrete data, time series data, and sentiment data from social media. The two approaches are only first steps towards visual-interactive prediction, but have shown to deliver improved prediction results as compared to baseline non-interactive prediction, and may serve as starting points for other predictive applications. Furthermore, an abstract workflow for predictive visual analytics is derived. We also discuss promising challenges for future research in visual-interactive predictive analysis, including design space, evaluation, and model visualization.</dcterms:abstract>
    <dcterms:title>Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges</dcterms:title>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32741/1/El-Assady_0-305819.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32741"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-27T14:38:24Z</dcterms:available>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-27T14:38:24Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2016-01-27
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen