Publikation:

Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges

Lade...
Vorschaubild

Dateien

El-Assady_0-305819.pdf
El-Assady_0-305819.pdfGröße: 683.78 KBDownloads: 354

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings. 2014

Zusammenfassung

We present two original approaches for visual-interactive prediction of user movie ratings and box office gross after the opening weekend, as designed and awarded during VAST Challenge 2013. Our approaches are driven by machine learning models and interactive data exploration, respectively. They consider an array of different training data types, including categorical/discrete data, time series data, and sentiment data from social media. The two approaches are only first steps towards visual-interactive prediction, but have shown to deliver improved prediction results as compared to baseline non-interactive prediction, and may serve as starting points for other predictive applications. Furthermore, an abstract workflow for predictive visual analytics is derived. We also discuss promising challenges for future research in visual-interactive predictive analysis, including design space, evaluation, and model visualization.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Analytics, Interactive Prediction, System Design, Evaluation

Konferenz

An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics, 9. Nov. 2014 - 9. Nov. 2014, Paris
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EL-ASSADY, Mennatallah, Wolfgang JENTNER, Manuel STEIN, Fabian FISCHER, Tobias SCHRECK, Daniel A. KEIM, 2014. Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges. An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics. Paris, 9. Nov. 2014 - 9. Nov. 2014. In: An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings. 2014
BibTex
@inproceedings{ElAssady2014Predi-32741,
  year={2014},
  title={Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges},
  url={http://predictive-workshop.github.io/papers/vpa2014_8.pdf},
  booktitle={An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings},
  author={El-Assady, Mennatallah and Jentner, Wolfgang and Stein, Manuel and Fischer, Fabian and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32741">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32741/1/El-Assady_0-305819.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:abstract xml:lang="eng">We present two original approaches for visual-interactive prediction of user movie ratings and box office gross after the opening weekend, as designed and awarded during VAST Challenge 2013. Our approaches are driven by machine learning models and interactive data exploration, respectively. They consider an array of different training data types, including categorical/discrete data, time series data, and sentiment data from social media. The two approaches are only first steps towards visual-interactive prediction, but have shown to deliver improved prediction results as compared to baseline non-interactive prediction, and may serve as starting points for other predictive applications. Furthermore, an abstract workflow for predictive visual analytics is derived. We also discuss promising challenges for future research in visual-interactive predictive analysis, including design space, evaluation, and model visualization.</dcterms:abstract>
    <dcterms:title>Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges</dcterms:title>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32741/1/El-Assady_0-305819.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32741"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-27T14:38:24Z</dcterms:available>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-27T14:38:24Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2016-01-27

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen