Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present two original approaches for visual-interactive prediction of user movie ratings and box office gross after the opening weekend, as designed and awarded during VAST Challenge 2013. Our approaches are driven by machine learning models and interactive data exploration, respectively. They consider an array of different training data types, including categorical/discrete data, time series data, and sentiment data from social media. The two approaches are only first steps towards visual-interactive prediction, but have shown to deliver improved prediction results as compared to baseline non-interactive prediction, and may serve as starting points for other predictive applications. Furthermore, an abstract workflow for predictive visual analytics is derived. We also discuss promising challenges for future research in visual-interactive predictive analysis, including design space, evaluation, and model visualization.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EL-ASSADY, Mennatallah, Wolfgang JENTNER, Manuel STEIN, Fabian FISCHER, Tobias SCHRECK, Daniel A. KEIM, 2014. Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges. An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics. Paris, 9. Nov. 2014 - 9. Nov. 2014. In: An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings. 2014BibTex
@inproceedings{ElAssady2014Predi-32741, year={2014}, title={Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges}, url={http://predictive-workshop.github.io/papers/vpa2014_8.pdf}, booktitle={An IEEE VIS 2014 Workshop : Visualization for Predictive Analytics ; Proceedings}, author={El-Assady, Mennatallah and Jentner, Wolfgang and Stein, Manuel and Fischer, Fabian and Schreck, Tobias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32741"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Fischer, Fabian</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32741/1/El-Assady_0-305819.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:creator>Stein, Manuel</dc:creator> <dcterms:abstract xml:lang="eng">We present two original approaches for visual-interactive prediction of user movie ratings and box office gross after the opening weekend, as designed and awarded during VAST Challenge 2013. Our approaches are driven by machine learning models and interactive data exploration, respectively. They consider an array of different training data types, including categorical/discrete data, time series data, and sentiment data from social media. The two approaches are only first steps towards visual-interactive prediction, but have shown to deliver improved prediction results as compared to baseline non-interactive prediction, and may serve as starting points for other predictive applications. Furthermore, an abstract workflow for predictive visual analytics is derived. We also discuss promising challenges for future research in visual-interactive predictive analysis, including design space, evaluation, and model visualization.</dcterms:abstract> <dcterms:title>Predictive Visual Analytics : Approaches for Movie Ratings and Discussion of Open Research Challenges</dcterms:title> <dc:creator>Fischer, Fabian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32741/1/El-Assady_0-305819.pdf"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32741"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-27T14:38:24Z</dcterms:available> <dc:contributor>Stein, Manuel</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-27T14:38:24Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>