Real-time classification of ground from LIDAR data for helicopter navigation

Lade...
Vorschaubild
Dateien
Eisenkeil_243403.pdf
Eisenkeil_243403.pdfGröße: 606.61 KBDownloads: 776
Datum
2013
Autor:innen
Schafhitzel, Tobias
Kühne, Uwe
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
KADAR, Ivan, ed.. Signal Processing, Sensor Fusion, and Target Recognition XXII. SPIE, 2013, pp. 874512. SPIE Proceedings. 8745. Available under: doi: 10.1117/12.2015681
Zusammenfassung

Helicopter pilots often have to deal with bad weather conditions and degraded views. Such situations may decrease the pilots' situational awareness significantly. The worst-case scenario would be a complete loss of visual reference during an off-field landing due to brownout or white out. In order to increase the pilots' situational awareness, helicopters nowadays are equipped with different sensors that are used to gather information about the terrain ahead of the helicopter. Synthetic vision systems are used to capture and classify sensor data and to visualize them on multifunctional displays or pilot's head up displays. This requires the input data to be a reliably classified into obstacles and ground. In this paper, we present a regularization-based terrain classifier. Regularization is a popular segmentation method in computer vision and used in active contours. For a real-time application scenario with LIDAR data, we developed an optimization that uses different levels of detail depending on the accuracy of the sensor. After a preprocessing step where points are removed that cannot be ground, the method fits a shape underneath the recorded point cloud. Once this shape is calculated, the points below this shape can be distinguished from elevated objects and are classified as ground. Finally, we demonstrate the quality of our segmentation approach by its application on operational flight recordings. This method builds a part of an entire synthetic vision processing chain, where the classified points are used to support the generation of a real-time synthetic view of the terrain as an assistance tool for the helicopter pilot.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
SPIE Defense, Security, and Sensing, Baltimore, Maryland, USA
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690EISENKEIL, Ferdinand, Tobias SCHAFHITZEL, Uwe KÜHNE, Oliver DEUSSEN, 2013. Real-time classification of ground from LIDAR data for helicopter navigation. SPIE Defense, Security, and Sensing. Baltimore, Maryland, USA. In: KADAR, Ivan, ed.. Signal Processing, Sensor Fusion, and Target Recognition XXII. SPIE, 2013, pp. 874512. SPIE Proceedings. 8745. Available under: doi: 10.1117/12.2015681
BibTex
@inproceedings{Eisenkeil2013-05-23Realt-24340,
  year={2013},
  doi={10.1117/12.2015681},
  title={Real-time classification of ground from LIDAR data for helicopter navigation},
  number={8745},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Signal Processing, Sensor Fusion, and Target Recognition XXII},
  editor={Kadar, Ivan},
  author={Eisenkeil, Ferdinand and Schafhitzel, Tobias and Kühne, Uwe and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24340">
    <dcterms:bibliographicCitation>Proceedings of SPIE : Signal Processing, Sensor Fusion, and Target Recognition XXII ; 29 April - 2 May 2013, Baltimore, Maryland, United States / Ivan Kadar (ed.). - Bellingham, Wash. : SPIE, 2013 - Art. 874512. - (Proceedings of SPIE ; 8745). - ISBN 978-0-8194-9536-5</dcterms:bibliographicCitation>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-30T22:25:04Z</dcterms:available>
    <dc:contributor>Schafhitzel, Tobias</dc:contributor>
    <dc:creator>Kühne, Uwe</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24340/2/Eisenkeil_243403.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24340/2/Eisenkeil_243403.pdf"/>
    <dc:language>eng</dc:language>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24340"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:38:51Z</dc:date>
    <dc:creator>Eisenkeil, Ferdinand</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Real-time classification of ground from LIDAR data for helicopter navigation</dcterms:title>
    <dc:contributor>Eisenkeil, Ferdinand</dc:contributor>
    <dcterms:issued>2013-05-23</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Helicopter pilots often have to deal with bad weather conditions and degraded views. Such situations may decrease the pilots' situational awareness significantly. The worst-case scenario would be a complete loss of visual reference during an off-field landing due to brownout or white out. In order to increase the pilots' situational awareness, helicopters nowadays are equipped with different sensors that are used to gather information about the terrain ahead of the helicopter. Synthetic vision systems are used to capture and classify sensor data and to visualize them on multifunctional displays or pilot's head up displays. This requires the input data to be a reliably classified into obstacles and ground. In this paper, we present a regularization-based terrain classifier. Regularization is a popular segmentation method in computer vision and used in active contours. For a real-time application scenario with LIDAR data, we developed an optimization that uses different levels of detail depending on the accuracy of the sensor. After a preprocessing step where points are removed that cannot be ground, the method fits a shape underneath the recorded point cloud. Once this shape is calculated, the points below this shape can be distinguished from elevated objects and are classified as ground. Finally, we demonstrate the quality of our segmentation approach by its application on operational flight recordings. This method builds a part of an entire synthetic vision processing chain, where the classified points are used to support the generation of a real-time synthetic view of the terrain as an assistance tool for the helicopter pilot.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schafhitzel, Tobias</dc:creator>
    <dc:contributor>Kühne, Uwe</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen