Maximum-Score Diversity Selection for Early Drug Discovery

Loading...
Thumbnail Image
Date
2011
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of Chemical Information and Modeling ; 51 (2011), 2. - pp. 237-247. - ISSN 1549-9596. - eISSN 1549-960X
Abstract
Diversity selection is a common task in early drug discovery. One drawback of current approaches is that usually only the structural diversity is taken into account and activity information is ignored. In this article we present a modified version of diversity selection - which we term "Maximum-Score Diversity Selection" - that additionally takes the estimated or predicted activities of the molecules into account. We show that finding an optimal solution to this problem is computationally very expensive (it is NP-hard) and therefore heuristic approaches are needed.
After a discussion of existing approaches we present our new method which is computationally far more efficient but at the same time produces comparable results. We conclude by validating these theoretical differences on several datasets.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Heuristik,Teilmengenauswahl
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690MEINL, Thorsten, Claude OSTERMANN, Michael R. BERTHOLD, 2011. Maximum-Score Diversity Selection for Early Drug Discovery. In: Journal of Chemical Information and Modeling. 51(2), pp. 237-247. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci100426r
BibTex
@article{Meinl2011-02-28Maxim-12389,
  year={2011},
  doi={10.1021/ci100426r},
  title={Maximum-Score Diversity Selection for Early Drug Discovery},
  number={2},
  volume={51},
  issn={1549-9596},
  journal={Journal of Chemical Information and Modeling},
  pages={237--247},
  author={Meinl, Thorsten and Ostermann, Claude and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12389">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12389/1/Meinl.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ostermann, Claude</dc:creator>
    <dc:contributor>Ostermann, Claude</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-27T23:25:04Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Maximum-Score Diversity Selection for Early Drug Discovery</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12389/1/Meinl.pdf"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-01T09:56:36Z</dc:date>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:bibliographicCitation>Journal of Chemical Information and Modeling, 51 (2011), 2, S. 237-247</dcterms:bibliographicCitation>
    <dc:contributor>Meinl, Thorsten</dc:contributor>
    <dcterms:abstract xml:lang="eng">Diversity selection is a common task in early drug discovery. One drawback of current approaches is that usually only the structural diversity is taken into account and activity information is ignored. In this article we present a modified version of diversity selection - which we term "Maximum-Score Diversity Selection" - that additionally takes the estimated or predicted activities of the molecules into account. We show that finding an optimal solution to this problem is computationally very expensive (it is NP-hard) and therefore heuristic approaches are needed.&lt;br /&gt;After a discussion of existing approaches we present our new method which is computationally far more efficient but at the same time produces comparable results. We conclude by validating these theoretical differences on several datasets.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12389"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2011-02-28</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Meinl, Thorsten</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed