Maximum-Score Diversity Selection for Early Drug Discovery

Lade...
Vorschaubild
Dateien
Meinl.pdf
Meinl.pdfGröße: 4.54 MBDownloads: 494
Datum
2011
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Chemical Information and Modeling. 2011, 51(2), pp. 237-247. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci100426r
Zusammenfassung

Diversity selection is a common task in early drug discovery. One drawback of current approaches is that usually only the structural diversity is taken into account and activity information is ignored. In this article we present a modified version of diversity selection - which we term "Maximum-Score Diversity Selection" - that additionally takes the estimated or predicted activities of the molecules into account. We show that finding an optimal solution to this problem is computationally very expensive (it is NP-hard) and therefore heuristic approaches are needed.
After a discussion of existing approaches we present our new method which is computationally far more efficient but at the same time produces comparable results. We conclude by validating these theoretical differences on several datasets.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Heuristik, Teilmengenauswahl
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MEINL, Thorsten, Claude OSTERMANN, Michael R. BERTHOLD, 2011. Maximum-Score Diversity Selection for Early Drug Discovery. In: Journal of Chemical Information and Modeling. 2011, 51(2), pp. 237-247. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci100426r
BibTex
@article{Meinl2011-02-28Maxim-12389,
  year={2011},
  doi={10.1021/ci100426r},
  title={Maximum-Score Diversity Selection for Early Drug Discovery},
  number={2},
  volume={51},
  issn={1549-9596},
  journal={Journal of Chemical Information and Modeling},
  pages={237--247},
  author={Meinl, Thorsten and Ostermann, Claude and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12389">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12389/1/Meinl.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ostermann, Claude</dc:creator>
    <dc:contributor>Ostermann, Claude</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-27T23:25:04Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Maximum-Score Diversity Selection for Early Drug Discovery</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12389/1/Meinl.pdf"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-01T09:56:36Z</dc:date>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:bibliographicCitation>Journal of Chemical Information and Modeling, 51 (2011), 2, S. 237-247</dcterms:bibliographicCitation>
    <dc:contributor>Meinl, Thorsten</dc:contributor>
    <dcterms:abstract xml:lang="eng">Diversity selection is a common task in early drug discovery. One drawback of current approaches is that usually only the structural diversity is taken into account and activity information is ignored. In this article we present a modified version of diversity selection - which we term "Maximum-Score Diversity Selection" - that additionally takes the estimated or predicted activities of the molecules into account. We show that finding an optimal solution to this problem is computationally very expensive (it is NP-hard) and therefore heuristic approaches are needed.&lt;br /&gt;After a discussion of existing approaches we present our new method which is computationally far more efficient but at the same time produces comparable results. We conclude by validating these theoretical differences on several datasets.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12389"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2011-02-28</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Meinl, Thorsten</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen