Unique Tensor Factorization of Algebras
Lade...
Dateien
Datum
1998
Autor:innen
Nüsken, Michael
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
NÜSKEN, Michael, 1998. Unique Tensor Factorization of AlgebrasBibTex
@techreport{Nusken1998Uniqu-6356, year={1998}, series={Konstanzer Schriften in Mathematik und Informatik}, title={Unique Tensor Factorization of Algebras}, number={76}, author={Nüsken, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6356"> <dcterms:issued>1998</dcterms:issued> <dc:contributor>Nüsken, Michael</dc:contributor> <dcterms:title>Unique Tensor Factorization of Algebras</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Nüsken, Michael</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6356/1/preprint_076.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6356"/> <dcterms:abstract xml:lang="eng">Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dc:date> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6356/1/preprint_076.pdf"/> </rdf:Description> </rdf:RDF>