Unique Tensor Factorization of Algebras
Unique Tensor Factorization of Algebras
Loading...
Date
1998
Authors
Nüsken, Michael
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 76
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
NÜSKEN, Michael, 1998. Unique Tensor Factorization of AlgebrasBibTex
@techreport{Nusken1998Uniqu-6356, year={1998}, series={Konstanzer Schriften in Mathematik und Informatik}, title={Unique Tensor Factorization of Algebras}, number={76}, author={Nüsken, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6356"> <dcterms:issued>1998</dcterms:issued> <dc:contributor>Nüsken, Michael</dc:contributor> <dcterms:title>Unique Tensor Factorization of Algebras</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Nüsken, Michael</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6356/1/preprint_076.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6356"/> <dcterms:abstract xml:lang="eng">Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dc:date> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6356/1/preprint_076.pdf"/> </rdf:Description> </rdf:RDF>