Unique Tensor Factorization of Algebras

Lade...
Vorschaubild
Dateien
preprint_076.pdf
preprint_076.pdfGröße: 1001.89 KBDownloads: 343
Datum
1998
Autor:innen
Nüsken, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690NÜSKEN, Michael, 1998. Unique Tensor Factorization of Algebras
BibTex
@techreport{Nusken1998Uniqu-6356,
  year={1998},
  series={Konstanzer Schriften in Mathematik und Informatik},
  title={Unique Tensor Factorization of Algebras},
  number={76},
  author={Nüsken, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6356">
    <dcterms:issued>1998</dcterms:issued>
    <dc:contributor>Nüsken, Michael</dc:contributor>
    <dcterms:title>Unique Tensor Factorization of Algebras</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Nüsken, Michael</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6356/1/preprint_076.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6356"/>
    <dcterms:abstract xml:lang="eng">Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr  into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dc:date>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6356/1/preprint_076.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen