Tight-Binding Approach to Strain and Curvature in Monolayer Transition-Metal Dichalcogenides
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a model of the electronic properties of monolayer transition-metal dichalcogenides based on a tight binding approach which includes the effects of strain and curvature of the crystal lattice. Mechanical deformations of the lattice offer a powerful route for tuning the electronic structure of the transition-metal dichalcogenides, as changes to bond lengths lead directly to corrections in the electronic Hamiltonian while curvature of the crystal lattice mixes the orbital structure of the electronic Bloch bands. We first present an effective low energy Hamiltonian describing the electronic properties near the K point in the Brillouin zone, then present the corrections to this Hamiltonian due to arbitrary mechanical deformations and curvature in a way which treats both effects on an equal footing. This analysis finds that local area variations of the lattice allow for tuning of the band gap and effective masses, while the application of uniaxial strain decreases the magnitude of the direct band gap at the K point. Additionally, strain induced bond length modifications create a fictitious gauge field with a coupling strength that is smaller than that seen in related materials like graphene. We also find that curvature of the lattice leads to the appearance of both an effective in-plane magnetic field which couples to spin degrees of freedom and a Rashba-like spin-orbit coupling due to broken mirror inversion symmetry.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PEARCE, Alexander J., Eros MARIANI, Guido BURKARD, 2016. Tight-Binding Approach to Strain and Curvature in Monolayer Transition-Metal Dichalcogenides. In: Physical Review B. 2016, 94(15), 155416. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.94.155416BibTex
@article{Pearce2016Tight-36050, year={2016}, doi={10.1103/PhysRevB.94.155416}, title={Tight-Binding Approach to Strain and Curvature in Monolayer Transition-Metal Dichalcogenides}, number={15}, volume={94}, issn={2469-9950}, journal={Physical Review B}, author={Pearce, Alexander J. and Mariani, Eros and Burkard, Guido}, note={Article Number: 155416} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36050"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Mariani, Eros</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Pearce, Alexander J.</dc:contributor> <dc:creator>Pearce, Alexander J.</dc:creator> <dc:contributor>Mariani, Eros</dc:contributor> <dcterms:title>Tight-Binding Approach to Strain and Curvature in Monolayer Transition-Metal Dichalcogenides</dcterms:title> <dcterms:abstract xml:lang="eng">We present a model of the electronic properties of monolayer transition-metal dichalcogenides based on a tight binding approach which includes the effects of strain and curvature of the crystal lattice. Mechanical deformations of the lattice offer a powerful route for tuning the electronic structure of the transition-metal dichalcogenides, as changes to bond lengths lead directly to corrections in the electronic Hamiltonian while curvature of the crystal lattice mixes the orbital structure of the electronic Bloch bands. We first present an effective low energy Hamiltonian describing the electronic properties near the K point in the Brillouin zone, then present the corrections to this Hamiltonian due to arbitrary mechanical deformations and curvature in a way which treats both effects on an equal footing. This analysis finds that local area variations of the lattice allow for tuning of the band gap and effective masses, while the application of uniaxial strain decreases the magnitude of the direct band gap at the K point. Additionally, strain induced bond length modifications create a fictitious gauge field with a coupling strength that is smaller than that seen in related materials like graphene. We also find that curvature of the lattice leads to the appearance of both an effective in-plane magnetic field which couples to spin degrees of freedom and a Rashba-like spin-orbit coupling due to broken mirror inversion symmetry.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2016</dcterms:issued> <dc:creator>Burkard, Guido</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36050"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-11-23T13:44:21Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-11-23T13:44:21Z</dcterms:available> </rdf:Description> </rdf:RDF>