Magnetic and structural properties of the Gd/Ni-Bilayer-System

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2007
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Magnetische und strukturelle Eigenschaften des Gd/Ni-Bilagen-Systems
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Rare earth elements have been the scope of intensive research for many of their different properties over the past decades. The high magnetic permanent moment of these elements aroused a lot of interest and research on their magnetic behavior or structure, which was already conducted in the early 1970s. But due to the challenging problems associated with the handling of rare earths like their strong reactivity with water and oxygen, strong alloying with other metals or their high content of impurities was keeping research only to a small number of involved groups and publications per year. Another issue is the non-epitaxial or even amorphous growth of nearly all rare earth elements if evaporated under UHV conditions. There are only a few substrates which allow an epitaxial growth of gadolinium for example. But still the search for materials with high magnetization or either high or low coercivity for magnetic data storage technology or magnetic sensing elements attract notice to this class of elements especially gadolinium. Gadolinium can be seen as the only room temperature ferromagnet among the rare earth materials due to the highest Curie temperature, which is 16°C. The low value of the coercivity limits its possible applications for data storage. Its permanent magnetic moment amounts to 7.98 µB, what exceeds for example the value of nickel by a factor of 12. Its magnetic moment is generated completely by the spin moment µs of the 4f-shell. The ferromagnetic behavior is a result of the indirect RKKY interaction between neighboring magnetic moments.
The investigated bilayers represent an interesting system for exchange coupled thin magnetic films. Nickel as one of the classical ferromagnets has a much higher Curie temperature (631 K) but only a fraction of the atomic magnetic moment of gadolinium. In the temperature range from 300 K down to 5 K the system consists of a nickel layer with a nearly constant magnetic moment and a gadolinium layer whose magnetic behavior strongly depends on temperature, along with a high permanent moment and low coercivity. This leads to effects like a negative remanence for distinct compositions and a transition from the so called Ni-aligned state to the Gd-aligned state. Also the polarization of the Gd-moments at the interface, even at temperatures far beyond its Curie-point, could be demonstrated. The magnetic properties were investigated by by SQUID and XMCD. The high precision and accurate temperature control of the SQUID and the element-specific sensitivity of the XMCD-technique complemented each other.
The structural properties of the bilayers were examined thoroughly by electron diffraction (MEED, LEED), Auger electron spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), Rutherford backscattering (RBS) and scanning tunneling microscopy (STM). The interplay between morphology, structure and magnetic properties was one of the key goals of this project and the close relationship was observed. The dependence on layer thickness, deposition temperature and substrate were determined for that and are summarized into a proposed model of the Gd/Ni-bilayer system at the end ot the thesis.

Zusammenfassung in einer weiteren Sprache

Seltene Erden wurden intensiv wegen ihrer vielen interessanten Eigenschaften in den letzten Jahrzehnten untersucht. Das hohe permanente magnetische Moment dieser Elemente weckte viel Interesse und ihr magnetisches Verhalten und Struktur wurde bereits in den 1970ern intensiv erforscht. Aber die experimentellen Schwierigkeiten bei der Handhabung der Seltenen Erden, wie ihre hohe Reaktivität mit Sauerstoff oder Wasser, Legierungsbildung oder der hohe Gehalt an Verunreinigungen sorgten dafür, dass die Forschung nur von einer kleinen Anzahl an Gruppen betrieben wurde und nur wenige Publikationen pro Jahr dazu erschienen. Ein weiterer Punkt ist, dass diese Materialien nicht epitaktisch oder gar amorph unter UHV-Bedingungen auf Oberflächen wachsen. Nur wenige Substrate erlauben für Gadolinium ein epitaktisches Wachstum, wie z. B. Wolfram. Die Suche jedoch nach Materialien mit einer hohen Magnetisierung oder hoher bzw. geringer Koerzitivität für magnetische Datenspeicherung oder Detektionsbauteile lenken immer wieder das Interesse auf diese Materialklasse, speziell Gadolinium. Dieses besitzt mit 289 K die höchste Curie-Temperatur aller seltenen Erden und wird deshalb oft als der einzige echte Ferromagnet dieser Elemente angesehen. Die geringe Koerzitivität limitiert jedoch eine Anwendung im Bereich der magnetischen Datenspeicher. Sein permanentes magnetisches Moment beträgt 7.98 µB, was den Wert von z. B. Nickel um den Faktor 12 übertrifft. Die Elektronen der abgeschirmten 4f-Schale erzeugen sein reines Spinmoment und die ferromagnetischen Eigenschaften werden durch die indirekte RKKY-Wechselwirkung verursacht.
Die untersuchten Bilagen stellen ein interessantes System von austauschgekoppelten dünnen magnetischen Filmen dar. Nickel als einer der klassischen Ferromagnete besitzt eine viel höhere Curie-Temperatur (631 K), sein atomares magnetisches Moment beträgt aber nur einen Bruchteil dessen von Gadolinium. In dem Temperaturbereich zwischen 300 K bis 5 K besteht das System also aus einer Nickelschicht mit nahezu temperaturunabhängigen magnetischen Eigenschaften und einer Gadoliniumschicht dessen magnetisches Moment stark von der Temperatur abhängt. Dies führt zu Effekten wie einer negativen Remanenz für bestimmte Zusammensetzungen und einem Wechsel vom so genannten Ni-aligned- zum Gd-alingned-Zustand. Die Polarisierung der Gd-Momente an der Grenzschicht konnte ebenfalls bis hin zu Temperaturen weit über den Curie-Punkt hinaus beobachtet werden. Die magnetischen Eigenschaften wurden mit SQUID und XMCD untersucht. Die hohe Genauigkeit und exakte Temperaturkontrolle des SQUIDs und die elementspezifischen Ergebnisse aus den XMCD-Experimenten ergänzen sich dabei sehr gut.
Die strukturellen Eigenschaften der Bilagen wurden ausgiebig durch Elektronenbeugung (MEED, LEED), Augerelektronenspektroskopie (AES), Röntgenbeugung (XRD, XRR), Transmissionselektronenmikroskopie (TEM), Rutherford-Rückstreuung (RBS) und Rastertunnelmikroskopie (STM) ermittelt. Das Zusammenspiel von Morphologie, struktureller Beschaffenheit und magnetischen Eigenschaften war eines der Hauptziele dieser Arbeit und ein enger Zusammenhang konnte beobachtet werden. Die Abhängigkeit von der Schichtdicke, Depositionstemperatur und Wahl des Substrats wurde bestimmt und sind in einem Modell des Gd/Ni-Systems am Ende der Dissertation zusammengefasst.

Fachgebiet (DDC)
530 Physik
Schlagwörter
Austauschkopplung, negative Remanenz, interlayer exchange coupling, negative remanence
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BARTH, Alexander, 2007. Magnetic and structural properties of the Gd/Ni-Bilayer-System [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Barth2007Magne-5175,
  year={2007},
  title={Magnetic and structural properties of the Gd/Ni-Bilayer-System},
  author={Barth, Alexander},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5175">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:53:45Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Barth, Alexander</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:title>Magnetic and structural properties of the Gd/Ni-Bilayer-System</dcterms:title>
    <dcterms:alternative>Magnetische und strukturelle Eigenschaften des Gd/Ni-Bilagen-Systems</dcterms:alternative>
    <dc:creator>Barth, Alexander</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:53:45Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5175"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5175/1/Barth_Diss.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5175/1/Barth_Diss.pdf"/>
    <dcterms:abstract xml:lang="eng">Rare earth elements have been the scope of intensive research for many of their different properties over the past decades. The high magnetic permanent moment of these elements aroused a lot of interest and research on their magnetic behavior or structure, which was already conducted in the early 1970s. But due to the challenging problems associated with the handling of rare earths like their strong reactivity with water and oxygen, strong alloying with other metals or their high content of impurities was keeping research only to a small number of involved groups and publications per year. Another issue is the non-epitaxial or even amorphous growth of nearly all rare earth elements if evaporated under UHV conditions. There are only a few substrates which allow an epitaxial growth of gadolinium for example. But still the search for materials with high magnetization or either high or low coercivity for magnetic data storage technology or magnetic sensing elements attract notice to this class of elements especially gadolinium. Gadolinium can be seen as the only room temperature ferromagnet among the rare earth materials due to the highest Curie temperature, which is 16°C. The low value of the coercivity limits its possible applications for data storage. Its permanent magnetic moment amounts to 7.98 µB, what exceeds for example the value of nickel by a factor of 12. Its magnetic moment is generated completely by the spin moment µs of the 4f-shell. The ferromagnetic behavior is a result of the indirect RKKY interaction between neighboring magnetic moments.&lt;br /&gt;The investigated bilayers represent an interesting system for exchange coupled thin magnetic films. Nickel as one of the classical ferromagnets has a much higher Curie temperature (631 K) but only a fraction of the atomic magnetic moment of gadolinium. In the temperature range from 300 K down to 5 K the system consists of a nickel layer with a nearly constant magnetic moment and a gadolinium layer whose magnetic behavior strongly depends on temperature, along with a high permanent moment and low coercivity. This leads to effects like a negative remanence for distinct compositions and a transition from the so called Ni-aligned state to the Gd-aligned state. Also the polarization of the Gd-moments at the interface, even at temperatures far beyond its Curie-point, could be demonstrated. The magnetic properties were investigated by by SQUID and XMCD. The high precision and accurate temperature control of the SQUID and the element-specific sensitivity of the XMCD-technique complemented each other.&lt;br /&gt;The structural properties of the bilayers were examined thoroughly by electron diffraction (MEED, LEED), Auger electron spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), Rutherford backscattering (RBS) and scanning tunneling microscopy (STM). The interplay between morphology, structure and magnetic properties was one of the key goals of this project and the close relationship was observed. The dependence on layer thickness, deposition temperature and substrate were determined for that and are summarized into a proposed model of the Gd/Ni-bilayer system at the end ot the thesis.</dcterms:abstract>
    <dcterms:issued>2007</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
July 26, 2007
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen