Damping Sentiment Analysis in Online Communication : Discussions, Monologs and Dialogs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Sentiment analysis programs are now sometimes used to detect patterns of sentiment use over time in online communication and to help automated systems interact better with users. Nevertheless, it seems that no previous published study has assessed whether the position of individual texts within on-going communication can be exploited to help detect their sentiments. This article assesses apparent sentiment anomalies in on-going communication – texts assigned significantly different sentiment strength to the average of previous texts – to see whether their classification can be improved. The results suggest that a damping procedure to reduce sudden large changes in sentiment can improve classification accuracy but that the optimal procedure will depend on the type of texts processed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
THELWALL, Mike, Kevan BUCKLEY, George PALTOGLOU, Marcin SKOWRON, David GARCIA, Stephane GOBRON, Junghyun AHN, Arvid KAPPAS, Dennis KÜSTER, Janusz A. HOLYST, 2013. Damping Sentiment Analysis in Online Communication : Discussions, Monologs and Dialogs. 14th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2013). Karlovasi, Samos, Greece, 24. März 2013 - 30. März 2013. In: GELBUKH, Alexander, ed.. Computational Linguistics and Intelligent Text Processing : 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part II. Berlin: Springer, 2013, pp. 1-12. Lecture Notes in Computer Science. 7817. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-642-37255-1. Available under: doi: 10.1007/978-3-642-37256-8_1BibTex
@inproceedings{Thelwall2013Dampi-66160, year={2013}, doi={10.1007/978-3-642-37256-8_1}, title={Damping Sentiment Analysis in Online Communication : Discussions, Monologs and Dialogs}, number={7817}, isbn={978-3-642-37255-1}, issn={0302-9743}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Computer Science}, booktitle={Computational Linguistics and Intelligent Text Processing : 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part II}, pages={1--12}, editor={Gelbukh, Alexander}, author={Thelwall, Mike and Buckley, Kevan and Paltoglou, George and Skowron, Marcin and Garcia, David and Gobron, Stephane and Ahn, Junghyun and Kappas, Arvid and Küster, Dennis and Holyst, Janusz A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66160"> <dc:creator>Garcia, David</dc:creator> <dc:contributor>Holyst, Janusz A.</dc:contributor> <dcterms:abstract xml:lang="eng">Sentiment analysis programs are now sometimes used to detect patterns of sentiment use over time in online communication and to help automated systems interact better with users. Nevertheless, it seems that no previous published study has assessed whether the position of individual texts within on-going communication can be exploited to help detect their sentiments. This article assesses apparent sentiment anomalies in on-going communication – texts assigned significantly different sentiment strength to the average of previous texts – to see whether their classification can be improved. The results suggest that a damping procedure to reduce sudden large changes in sentiment can improve classification accuracy but that the optimal procedure will depend on the type of texts processed.</dcterms:abstract> <dcterms:title>Damping Sentiment Analysis in Online Communication : Discussions, Monologs and Dialogs</dcterms:title> <dc:creator>Paltoglou, George</dc:creator> <dc:contributor>Garcia, David</dc:contributor> <dcterms:issued>2013</dcterms:issued> <dc:creator>Ahn, Junghyun</dc:creator> <dc:contributor>Küster, Dennis</dc:contributor> <dc:contributor>Thelwall, Mike</dc:contributor> <dc:creator>Buckley, Kevan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Gobron, Stephane</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Ahn, Junghyun</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66160"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-21T14:00:00Z</dcterms:available> <dc:creator>Küster, Dennis</dc:creator> <dc:contributor>Buckley, Kevan</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Skowron, Marcin</dc:contributor> <dc:creator>Kappas, Arvid</dc:creator> <dc:contributor>Paltoglou, George</dc:contributor> <dc:creator>Skowron, Marcin</dc:creator> <dc:creator>Gobron, Stephane</dc:creator> <dc:creator>Thelwall, Mike</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-21T14:00:00Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Kappas, Arvid</dc:contributor> <dc:creator>Holyst, Janusz A.</dc:creator> </rdf:Description> </rdf:RDF>