Publikation:

Pareto Sums of Pareto Sets : Lower Bounds and Algorithms

Lade...
Vorschaubild

Dateien

Funke_2-3hkptypdvxr26.pdf
Funke_2-3hkptypdvxr26.pdfGröße: 5.73 MBDownloads: 26

Datum

2024

Autor:innen

Funke, Daniel
Hespe, Demian
Sanders, Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Submitted

Wird erscheinen in

Zusammenfassung

In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal solutions. Many algorithms for these types of problems rely on efficient merging or combining of partial solutions and filtering of dominated solutions in the resulting sets. In this article, we consider the task of computing the Pareto sum of two given Pareto sets A,B of size n. The Pareto sum C contains all non-dominated points of the Minkowski sum M={a+b|a∈A,b∈B}. Since the Minkowski sum has a size of n^2, but the Pareto sum C can be much smaller, the goal is to compute C without having to compute and store all of M. We present several new algorithms for efficient Pareto sum computation, including an output-sensitive successive algorithm with a running time of O(nlogn+nk) and a space consumption of O(n+k) for k=|C|. If the elements of C are streamed, the space consumption reduces to O(n). For output sizes k≥2n, we prove a conditional lower bound for Pareto sum computation, which excludes running times in O(n^(2−δ)) for δ>0 unless the (min,+)-convolution hardness conjecture fails. The successive algorithm matches this lower bound for k∈Θ(n). However, for k∈Θ(n^2), the successive algorithm exhibits a cubic running time. But we also present an algorithm with an output-sensitive space consumption and a running time of O(n^2logn), which matches the lower bound up to a logarithmic factor even for large k. Furthermore, we describe suitable engineering techniques to improve the practical running times of our algorithms. Finally, we provide an extensive comparative experimental study on generated and real-world data. As a showcase application, we consider preprocessing-based bi-criteria route planning in road networks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FUNKE, Daniel, Demian HESPE, Peter SANDERS, Sabine STORANDT, Carina TRUSCHEL, 2024. Pareto Sums of Pareto Sets : Lower Bounds and Algorithms
BibTex
@unpublished{Funke2024Paret-71171,
  year={2024},
  doi={10.48550/ARXIV.2409.10232},
  title={Pareto Sums of Pareto Sets : Lower Bounds and Algorithms},
  author={Funke, Daniel and Hespe, Demian and Sanders, Peter and Storandt, Sabine and Truschel, Carina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71171">
    <dc:contributor>Funke, Daniel</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Sanders, Peter</dc:creator>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-08T12:30:05Z</dcterms:available>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71171/4/Funke_2-3hkptypdvxr26.pdf"/>
    <dc:contributor>Truschel, Carina</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Hespe, Demian</dc:contributor>
    <dcterms:abstract>In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal solutions. Many algorithms for these types of problems rely on efficient merging or combining of partial solutions and filtering of dominated solutions in the resulting sets. In this article, we consider the task of computing the Pareto sum of two given Pareto sets A,B of size n. The Pareto sum C contains all non-dominated points of the Minkowski sum M={a+b|a∈A,b∈B}. Since the Minkowski sum has a size of n^2, but the Pareto sum C can be much smaller, the goal is to compute C without having to compute and store all of M. We present several new algorithms for efficient Pareto sum computation, including an output-sensitive successive algorithm with a running time of O(nlogn+nk) and a space consumption of O(n+k) for k=|C|. If the elements of C are streamed, the space consumption reduces to O(n). For output sizes k≥2n, we prove a conditional lower bound for Pareto sum computation, which excludes running times in O(n^(2−δ)) for δ&gt;0 unless the (min,+)-convolution hardness conjecture fails. The successive algorithm matches this lower bound for k∈Θ(n). However, for k∈Θ(n^2), the successive algorithm exhibits a cubic running time. But we also present an algorithm with an output-sensitive space consumption and a running time of O(n^2logn), which matches the lower bound up to a logarithmic factor even for large k. Furthermore, we describe suitable engineering techniques to improve the practical running times of our algorithms. Finally, we provide an extensive comparative experimental study on generated and real-world data. As a showcase application, we consider preprocessing-based bi-criteria route planning in road networks.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Truschel, Carina</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71171"/>
    <dc:creator>Funke, Daniel</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71171/4/Funke_2-3hkptypdvxr26.pdf"/>
    <dc:contributor>Sanders, Peter</dc:contributor>
    <dcterms:issued>2024</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Pareto Sums of Pareto Sets : Lower Bounds and Algorithms</dcterms:title>
    <dc:creator>Hespe, Demian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-08T12:30:05Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen