Trust Junk and Evil Knobs: Calibrating Trust in AI Visualization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many papers make claims about specific visualization techniques that are said to enhance or calibrate trust in AI systems. But a design choice that enhances trust in some cases appears to damage it in others. In this paper, we explore this inherent duality through an analogy with "knobs". Turning a knob too far in one direction may result in under-trust, too far in the other, over-trust or, turned up further still, in a confusing distortion. While the designs or so-called "knobs" are not inherently evil, they can be misused or used in an adversarial context and thereby manipulated to mislead users or promote unwarranted levels of trust in AI systems. When a visualization that has no meaningful connection with the underlying model or data is employed to enhance trust, we refer to the result as "trust junk." From a review of 65 papers, we identify nine commonly made claims about trust calibration. We synthesize them into a framework of knobs that can be used for good or "evil," and distill our findings into observed pitfalls for the responsible design of human-AI systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WALL, Emily, Laura MATZEN, Mennatallah EL-ASSADY, Peta MASTERS, Helia HOSSEINPOUR, Alex ENDERT, Rita BORGO, Polo CHAU, Harald T. SCHUPP, Hendrik STROBELT, 2024. Trust Junk and Evil Knobs: Calibrating Trust in AI Visualization. 2024 IEEE 17th Pacific Visualization Conference (PacificVis). Tokyo, Japan, 23. Apr. 2024 - 26. Apr. 2024. In: 2024 IEEE 17th Pacific Visualization Conference, PacificVis 2024, Tokyo, Japan 23-26 April 2024 : Proceedings. Los Alamitos, CA ; u.a.: IEEE, 2024, S. 22-31. ISBN 979-8-3503-9380-4. Verfügbar unter: doi: 10.1109/pacificvis60374.2024.00012BibTex
@inproceedings{Wall2024-04-23Trust-70093, year={2024}, doi={10.1109/pacificvis60374.2024.00012}, title={Trust Junk and Evil Knobs: Calibrating Trust in AI Visualization}, isbn={979-8-3503-9380-4}, publisher={IEEE}, address={Los Alamitos, CA ; u.a.}, booktitle={2024 IEEE 17th Pacific Visualization Conference, PacificVis 2024, Tokyo, Japan 23-26 April 2024 : Proceedings}, pages={22--31}, author={Wall, Emily and Matzen, Laura and El-Assady, Mennatallah and Masters, Peta and Hosseinpour, Helia and Endert, Alex and Borgo, Rita and Chau, Polo and Schupp, Harald T. and Strobelt, Hendrik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70093"> <dc:contributor>Schupp, Harald T.</dc:contributor> <dcterms:title>Trust Junk and Evil Knobs: Calibrating Trust in AI Visualization</dcterms:title> <dcterms:abstract>Many papers make claims about specific visualization techniques that are said to enhance or calibrate trust in AI systems. But a design choice that enhances trust in some cases appears to damage it in others. In this paper, we explore this inherent duality through an analogy with "knobs". Turning a knob too far in one direction may result in under-trust, too far in the other, over-trust or, turned up further still, in a confusing distortion. While the designs or so-called "knobs" are not inherently evil, they can be misused or used in an adversarial context and thereby manipulated to mislead users or promote unwarranted levels of trust in AI systems. When a visualization that has no meaningful connection with the underlying model or data is employed to enhance trust, we refer to the result as "trust junk." From a review of 65 papers, we identify nine commonly made claims about trust calibration. We synthesize them into a framework of knobs that can be used for good or "evil," and distill our findings into observed pitfalls for the responsible design of human-AI systems.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-11T11:18:03Z</dc:date> <dc:contributor>Hosseinpour, Helia</dc:contributor> <dc:contributor>Masters, Peta</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:issued>2024-04-23</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-11T11:18:03Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Masters, Peta</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70093"/> <dc:contributor>Wall, Emily</dc:contributor> <dc:creator>Hosseinpour, Helia</dc:creator> <dc:creator>Schupp, Harald T.</dc:creator> <dc:creator>Matzen, Laura</dc:creator> <dc:creator>Strobelt, Hendrik</dc:creator> <dc:creator>Chau, Polo</dc:creator> <dc:contributor>Borgo, Rita</dc:contributor> <dc:contributor>Matzen, Laura</dc:contributor> <dc:creator>Borgo, Rita</dc:creator> <dc:creator>Endert, Alex</dc:creator> <dc:contributor>Endert, Alex</dc:contributor> <dc:contributor>Chau, Polo</dc:contributor> <dc:contributor>Strobelt, Hendrik</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Wall, Emily</dc:creator> </rdf:Description> </rdf:RDF>