Publikation:

ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ALTEX : Alternatives to Animal Experimentation. Springer Spektrum. 2023, 40(4), pp. 559-570. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2309191

Zusammenfassung

Toxicology has undergone a transformation from an observational science to a data-rich discipline ripe for artificial intelligence (AI) integration. The exponential growth in computing power coupled with accumulation of large toxicological datasets has created new opportunities to apply techniques like machine learning and especially deep learning to enhance chemical hazard assessment. This article provides an overview of key developments in AI-enabled toxicology, including early expert systems, statistical learning methods like quantitative structure-activity relationships (QSARs), recent advances with deep neural networks, and emerging trends. The promises and challenges of AI adoption for predictive toxicology, data analysis, risk assessment, and mechanistic research are discussed. Responsible development and application of interpretable and human-centered AI tools through multidisciplinary collaboration can accelerate evidence-based toxicology to better protect human health and the environment. However, AI is not a panacea and must be thoughtfully designed and utilized alongside ongoing efforts to improve primary evidence generation and appraisal.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HARTUNG, Thomas, 2023. ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. In: ALTEX : Alternatives to Animal Experimentation. Springer Spektrum. 2023, 40(4), pp. 559-570. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2309191
BibTex
@article{Hartung2023ToxAI-69561,
  year={2023},
  doi={10.14573/altex.2309191},
  title={ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science},
  number={4},
  volume={40},
  issn={1868-596X},
  journal={ALTEX : Alternatives to Animal Experimentation},
  pages={559--570},
  author={Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69561">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69561/1/Hartung_2-376x43jcu0je4.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69561"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract>Toxicology has undergone a transformation from an observational science to a data-rich discipline ripe for artificial intelligence (AI) integration. The exponential growth in computing power coupled with accumulation of large toxicological datasets has created new opportunities to apply techniques like machine learning and especially deep learning to enhance chemical hazard assessment. This article provides an overview of key developments in AI-enabled toxicology, including early expert systems, statistical learning methods like quantitative structure-activity relationships (QSARs), recent advances with deep neural networks, and emerging trends. The promises and challenges of AI adoption for predictive toxicology, data analysis, risk assessment, and mechanistic research are discussed. Responsible development and application of interpretable and human-centered AI tools through multidisciplinary collaboration can accelerate evidence-based toxicology to better protect human health and the environment. However, AI is not a panacea and must be thoughtfully designed and utilized alongside ongoing efforts to improve primary evidence generation and appraisal.</dcterms:abstract>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-08T08:46:20Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-08T08:46:20Z</dc:date>
    <dcterms:issued>2023</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69561/1/Hartung_2-376x43jcu0je4.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen