ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science

Lade...
Vorschaubild
Dateien
Hartung_2-376x43jcu0je4.pdf
Hartung_2-376x43jcu0je4.pdfGröße: 3.33 MBDownloads: 9
Datum
2023
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
ALTEX : Alternatives to Animal Experimentation. Springer Spektrum. 2023, 40(4), pp. 559-570. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2309191
Zusammenfassung

Toxicology has undergone a transformation from an observational science to a data-rich discipline ripe for artificial intelligence (AI) integration. The exponential growth in computing power coupled with accumulation of large toxicological datasets has created new opportunities to apply techniques like machine learning and especially deep learning to enhance chemical hazard assessment. This article provides an overview of key developments in AI-enabled toxicology, including early expert systems, statistical learning methods like quantitative structure-activity relationships (QSARs), recent advances with deep neural networks, and emerging trends. The promises and challenges of AI adoption for predictive toxicology, data analysis, risk assessment, and mechanistic research are discussed. Responsible development and application of interpretable and human-centered AI tools through multidisciplinary collaboration can accelerate evidence-based toxicology to better protect human health and the environment. However, AI is not a panacea and must be thoughtfully designed and utilized alongside ongoing efforts to improve primary evidence generation and appraisal.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HARTUNG, Thomas, 2023. ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. In: ALTEX : Alternatives to Animal Experimentation. Springer Spektrum. 2023, 40(4), pp. 559-570. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2309191
BibTex
@article{Hartung2023ToxAI-69561,
  year={2023},
  doi={10.14573/altex.2309191},
  title={ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science},
  number={4},
  volume={40},
  issn={1868-596X},
  journal={ALTEX : Alternatives to Animal Experimentation},
  pages={559--570},
  author={Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69561">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69561/1/Hartung_2-376x43jcu0je4.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69561"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract>Toxicology has undergone a transformation from an observational science to a data-rich discipline ripe for artificial intelligence (AI) integration. The exponential growth in computing power coupled with accumulation of large toxicological datasets has created new opportunities to apply techniques like machine learning and especially deep learning to enhance chemical hazard assessment. This article provides an overview of key developments in AI-enabled toxicology, including early expert systems, statistical learning methods like quantitative structure-activity relationships (QSARs), recent advances with deep neural networks, and emerging trends. The promises and challenges of AI adoption for predictive toxicology, data analysis, risk assessment, and mechanistic research are discussed. Responsible development and application of interpretable and human-centered AI tools through multidisciplinary collaboration can accelerate evidence-based toxicology to better protect human health and the environment. However, AI is not a panacea and must be thoughtfully designed and utilized alongside ongoing efforts to improve primary evidence generation and appraisal.</dcterms:abstract>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-08T08:46:20Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-08T08:46:20Z</dc:date>
    <dcterms:issued>2023</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69561/1/Hartung_2-376x43jcu0je4.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen