Publikation: ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Toxicology has undergone a transformation from an observational science to a data-rich discipline ripe for artificial intelligence (AI) integration. The exponential growth in computing power coupled with accumulation of large toxicological datasets has created new opportunities to apply techniques like machine learning and especially deep learning to enhance chemical hazard assessment. This article provides an overview of key developments in AI-enabled toxicology, including early expert systems, statistical learning methods like quantitative structure-activity relationships (QSARs), recent advances with deep neural networks, and emerging trends. The promises and challenges of AI adoption for predictive toxicology, data analysis, risk assessment, and mechanistic research are discussed. Responsible development and application of interpretable and human-centered AI tools through multidisciplinary collaboration can accelerate evidence-based toxicology to better protect human health and the environment. However, AI is not a panacea and must be thoughtfully designed and utilized alongside ongoing efforts to improve primary evidence generation and appraisal.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HARTUNG, Thomas, 2023. ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. In: ALTEX : Alternatives to Animal Experimentation. Springer Spektrum. 2023, 40(4), pp. 559-570. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2309191BibTex
@article{Hartung2023ToxAI-69561, year={2023}, doi={10.14573/altex.2309191}, title={ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science}, number={4}, volume={40}, issn={1868-596X}, journal={ALTEX : Alternatives to Animal Experimentation}, pages={559--570}, author={Hartung, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69561"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69561/1/Hartung_2-376x43jcu0je4.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69561"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:abstract>Toxicology has undergone a transformation from an observational science to a data-rich discipline ripe for artificial intelligence (AI) integration. The exponential growth in computing power coupled with accumulation of large toxicological datasets has created new opportunities to apply techniques like machine learning and especially deep learning to enhance chemical hazard assessment. This article provides an overview of key developments in AI-enabled toxicology, including early expert systems, statistical learning methods like quantitative structure-activity relationships (QSARs), recent advances with deep neural networks, and emerging trends. The promises and challenges of AI adoption for predictive toxicology, data analysis, risk assessment, and mechanistic research are discussed. Responsible development and application of interpretable and human-centered AI tools through multidisciplinary collaboration can accelerate evidence-based toxicology to better protect human health and the environment. However, AI is not a panacea and must be thoughtfully designed and utilized alongside ongoing efforts to improve primary evidence generation and appraisal.</dcterms:abstract> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:creator>Hartung, Thomas</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-08T08:46:20Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-08T08:46:20Z</dc:date> <dcterms:issued>2023</dcterms:issued> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>ToxAIcology : The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69561/1/Hartung_2-376x43jcu0je4.pdf"/> </rdf:Description> </rdf:RDF>