Klein Approximation and Hilbertian fields
Klein Approximation and Hilbertian fields
No Thumbnail Available
Files
There are no files associated with this item.
Date
2013
Authors
Paran, Elad
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal für die reine und angewandte Mathematik (Crelles Journal) ; 2013 (2013), 676. - ISSN 1435-5345. - eISSN 1435-5345
Abstract
The quotient field of a generalized Krull domain of dimension exceeding one is Hilbertian by a theorem of Weissauer. Building on work of R. Klein we generalize this criterion for Hilbertianity to a wider class of domains. This allows us to extend recent results on Hilbertianity of fields of power series and obtain new Hilbertian fields.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
FEHM, Arno, Elad PARAN, 2013. Klein Approximation and Hilbertian fields. In: Journal für die reine und angewandte Mathematik (Crelles Journal). 2013(676). ISSN 1435-5345. eISSN 1435-5345. Available under: doi: 10.1515/crelle.2012.007BibTex
@article{Fehm2013Klein-23250, year={2013}, doi={10.1515/crelle.2012.007}, title={Klein Approximation and Hilbertian fields}, number={676}, volume={2013}, issn={1435-5345}, journal={Journal für die reine und angewandte Mathematik (Crelles Journal)}, author={Fehm, Arno and Paran, Elad} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23250"> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Paran, Elad</dc:contributor> <dc:creator>Fehm, Arno</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23250"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The quotient field of a generalized Krull domain of dimension exceeding one is Hilbertian by a theorem of Weissauer. Building on work of R. Klein we generalize this criterion for Hilbertianity to a wider class of domains. This allows us to extend recent results on Hilbertianity of fields of power series and obtain new Hilbertian fields.</dcterms:abstract> <dcterms:issued>2013</dcterms:issued> <dcterms:title>Klein Approximation and Hilbertian fields</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T10:14:08Z</dc:date> <dc:creator>Paran, Elad</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Fehm, Arno</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T10:14:08Z</dcterms:available> <dcterms:bibliographicCitation>Journal für die reine und angewandte Mathematik ; 2013 (2013), 676. - S. 213-225</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes