The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies

Lade...
Vorschaubild
Dateien
Fazel_2-359d0sns79mo1.pdf
Fazel_2-359d0sns79mo1.pdfGröße: 1.39 MBDownloads: 156
Datum
2022
Autor:innen
Fazel, Seena
Fanshawe, Thomas
Gil, Sharon Danielle
Monahan, John
Yu, Rongqin
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Criminal Justice. Elsevier. 2022, 81, 101902. ISSN 0047-2352. eISSN 1873-6203. Available under: doi: 10.1016/j.jcrimjus.2022.101902
Zusammenfassung

Although risk assessment tools have been widely used to inform sentencing decisions, there is uncertainty about the extent and quality of evidence of their predictive performance when validated in new samples. Following PRISMA guidelines, we conducted a systematic review of validation studies of 11 commonly used risk assessment tools for sentencing. We identified 36 studies with 597,665 participants, among which were 27 independent validation studies with 177,711 individuals. Overall, the predictive performance of the included risk assessment tools was mixed, and ranged from poor to moderate. Tool performance was typically overestimated in studies with smaller sample sizes or studies in which tool developers were co-authors. Most studies only reported area under the curve (AUC), which ranged from 0.57 to 0.75 in independent studies with more than 500 participants. The majority did not report key performance measures, such as calibration and rates of false positives and negatives. In addition, most validation studies had a high risk of bias, partly due to inappropriate analytical approach used. We conclude that the research priority is for future investigations to address the key methodological shortcomings identified in this review, and policy makers should enable this research. More sufficiently powered independent validation studies are necessary.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Sentencing, Recidivism, Risk prediction, Risk assessment
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FAZEL, Seena, Matthias BURGHART, Thomas FANSHAWE, Sharon Danielle GIL, John MONAHAN, Rongqin YU, 2022. The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies. In: Journal of Criminal Justice. Elsevier. 2022, 81, 101902. ISSN 0047-2352. eISSN 1873-6203. Available under: doi: 10.1016/j.jcrimjus.2022.101902
BibTex
@article{Fazel2022-07predi-58290,
  year={2022},
  doi={10.1016/j.jcrimjus.2022.101902},
  title={The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies},
  volume={81},
  issn={0047-2352},
  journal={Journal of Criminal Justice},
  author={Fazel, Seena and Burghart, Matthias and Fanshawe, Thomas and Gil, Sharon Danielle and Monahan, John and Yu, Rongqin},
  note={Article Number: 101902}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58290">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58290/1/Fazel_2-359d0sns79mo1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-16T07:43:07Z</dc:date>
    <dcterms:abstract xml:lang="eng">Although risk assessment tools have been widely used to inform sentencing decisions, there is uncertainty about the extent and quality of evidence of their predictive performance when validated in new samples. Following PRISMA guidelines, we conducted a systematic review of validation studies of 11 commonly used risk assessment tools for sentencing. We identified 36 studies with 597,665 participants, among which were 27 independent validation studies with 177,711 individuals. Overall, the predictive performance of the included risk assessment tools was mixed, and ranged from poor to moderate. Tool performance was typically overestimated in studies with smaller sample sizes or studies in which tool developers were co-authors. Most studies only reported area under the curve (AUC), which ranged from 0.57 to 0.75 in independent studies with more than 500 participants. The majority did not report key performance measures, such as calibration and rates of false positives and negatives. In addition, most validation studies had a high risk of bias, partly due to inappropriate analytical approach used. We conclude that the research priority is for future investigations to address the key methodological shortcomings identified in this review, and policy makers should enable this research. More sufficiently powered independent validation studies are necessary.</dcterms:abstract>
    <dc:contributor>Gil, Sharon Danielle</dc:contributor>
    <dc:contributor>Yu, Rongqin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2022-07</dcterms:issued>
    <dcterms:title>The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies</dcterms:title>
    <dc:creator>Yu, Rongqin</dc:creator>
    <dc:contributor>Burghart, Matthias</dc:contributor>
    <dc:creator>Monahan, John</dc:creator>
    <dc:creator>Gil, Sharon Danielle</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Fazel, Seena</dc:contributor>
    <dc:contributor>Monahan, John</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-16T07:43:07Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Fanshawe, Thomas</dc:contributor>
    <dc:creator>Burghart, Matthias</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58290/1/Fazel_2-359d0sns79mo1.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58290"/>
    <dc:creator>Fazel, Seena</dc:creator>
    <dc:creator>Fanshawe, Thomas</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen