Publikation:

The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies

Lade...
Vorschaubild

Dateien

Fazel_2-359d0sns79mo1.pdf
Fazel_2-359d0sns79mo1.pdfGröße: 1.39 MBDownloads: 178

Datum

2022

Autor:innen

Fazel, Seena
Fanshawe, Thomas
Gil, Sharon Danielle
Monahan, John
Yu, Rongqin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Criminal Justice. Elsevier. 2022, 81, 101902. ISSN 0047-2352. eISSN 1873-6203. Available under: doi: 10.1016/j.jcrimjus.2022.101902

Zusammenfassung

Although risk assessment tools have been widely used to inform sentencing decisions, there is uncertainty about the extent and quality of evidence of their predictive performance when validated in new samples. Following PRISMA guidelines, we conducted a systematic review of validation studies of 11 commonly used risk assessment tools for sentencing. We identified 36 studies with 597,665 participants, among which were 27 independent validation studies with 177,711 individuals. Overall, the predictive performance of the included risk assessment tools was mixed, and ranged from poor to moderate. Tool performance was typically overestimated in studies with smaller sample sizes or studies in which tool developers were co-authors. Most studies only reported area under the curve (AUC), which ranged from 0.57 to 0.75 in independent studies with more than 500 participants. The majority did not report key performance measures, such as calibration and rates of false positives and negatives. In addition, most validation studies had a high risk of bias, partly due to inappropriate analytical approach used. We conclude that the research priority is for future investigations to address the key methodological shortcomings identified in this review, and policy makers should enable this research. More sufficiently powered independent validation studies are necessary.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Sentencing, Recidivism, Risk prediction, Risk assessment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FAZEL, Seena, Matthias BURGHART, Thomas FANSHAWE, Sharon Danielle GIL, John MONAHAN, Rongqin YU, 2022. The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies. In: Journal of Criminal Justice. Elsevier. 2022, 81, 101902. ISSN 0047-2352. eISSN 1873-6203. Available under: doi: 10.1016/j.jcrimjus.2022.101902
BibTex
@article{Fazel2022-07predi-58290,
  year={2022},
  doi={10.1016/j.jcrimjus.2022.101902},
  title={The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies},
  volume={81},
  issn={0047-2352},
  journal={Journal of Criminal Justice},
  author={Fazel, Seena and Burghart, Matthias and Fanshawe, Thomas and Gil, Sharon Danielle and Monahan, John and Yu, Rongqin},
  note={Article Number: 101902}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58290">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58290/1/Fazel_2-359d0sns79mo1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-16T07:43:07Z</dc:date>
    <dcterms:abstract xml:lang="eng">Although risk assessment tools have been widely used to inform sentencing decisions, there is uncertainty about the extent and quality of evidence of their predictive performance when validated in new samples. Following PRISMA guidelines, we conducted a systematic review of validation studies of 11 commonly used risk assessment tools for sentencing. We identified 36 studies with 597,665 participants, among which were 27 independent validation studies with 177,711 individuals. Overall, the predictive performance of the included risk assessment tools was mixed, and ranged from poor to moderate. Tool performance was typically overestimated in studies with smaller sample sizes or studies in which tool developers were co-authors. Most studies only reported area under the curve (AUC), which ranged from 0.57 to 0.75 in independent studies with more than 500 participants. The majority did not report key performance measures, such as calibration and rates of false positives and negatives. In addition, most validation studies had a high risk of bias, partly due to inappropriate analytical approach used. We conclude that the research priority is for future investigations to address the key methodological shortcomings identified in this review, and policy makers should enable this research. More sufficiently powered independent validation studies are necessary.</dcterms:abstract>
    <dc:contributor>Gil, Sharon Danielle</dc:contributor>
    <dc:contributor>Yu, Rongqin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2022-07</dcterms:issued>
    <dcterms:title>The predictive performance of criminal risk assessment tools used at sentencing : Systematic review of validation studies</dcterms:title>
    <dc:creator>Yu, Rongqin</dc:creator>
    <dc:contributor>Burghart, Matthias</dc:contributor>
    <dc:creator>Monahan, John</dc:creator>
    <dc:creator>Gil, Sharon Danielle</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Fazel, Seena</dc:contributor>
    <dc:contributor>Monahan, John</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-16T07:43:07Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Fanshawe, Thomas</dc:contributor>
    <dc:creator>Burghart, Matthias</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58290/1/Fazel_2-359d0sns79mo1.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58290"/>
    <dc:creator>Fazel, Seena</dc:creator>
    <dc:creator>Fanshawe, Thomas</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen