A 2n2-log2(n)-1 lower bound for the border rank of matrix multiplication
A 2n2-log2(n)-1 lower bound for the border rank of matrix multiplication
No Thumbnail Available
Files
There are no files associated with this item.
Date
2018
Authors
Landsberg, Joseph M.
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
International Mathematics Research Notices ; 2018 (2018), 15. - pp. 4722-4733. - Oxford University Press (OUP). - ISSN 1073-7928. - eISSN 1687-0247
Abstract
Let M⟨n⟩ ∈ Cn2⊗Cn2⊗Cn2 denote the matrix multiplication tensor for n×n matrices. We use the border substitution method [2, 3, 6] combined with Koszul flattenings [8] to prove the border rank lower bound R(M⟨n,n,n⟩)≥2n2−⌈log2(n)⌉−1.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
LANDSBERG, Joseph M., Mateusz MICHALEK, 2018. A 2n2-log2(n)-1 lower bound for the border rank of matrix multiplication. In: International Mathematics Research Notices. Oxford University Press (OUP). 2018(15), pp. 4722-4733. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnx025BibTex
@article{Landsberg2018lower-53233, year={2018}, doi={10.1093/imrn/rnx025}, title={A 2n<sup>2</sup>-log<sub>2</sub>(n)-1 lower bound for the border rank of matrix multiplication}, number={15}, volume={2018}, issn={1073-7928}, journal={International Mathematics Research Notices}, pages={4722--4733}, author={Landsberg, Joseph M. and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53233"> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Let M<sub>⟨n⟩</sub> ∈ C<sup>n2</sup>⊗C<sup>n2</sup>⊗C<sup>n2</sup> denote the matrix multiplication tensor for n×n matrices. We use the border substitution method [2, 3, 6] combined with Koszul flattenings [8] to prove the border rank lower bound R(M<sub>⟨n,n,n⟩</sub>)≥2n<sup>2</sup>−⌈log<sub>2</sub>(n)⌉−1.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-23T09:44:04Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:title>A 2n<sup>2</sup>-log<sub>2</sub>(n)-1 lower bound for the border rank of matrix multiplication</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53233"/> <dc:creator>Landsberg, Joseph M.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-23T09:44:04Z</dc:date> <dc:contributor>Landsberg, Joseph M.</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes