Visual cluster analysis of trajectory data with interactive Kohonen maps

Loading...
Thumbnail Image
Date
2009
Authors
Bernard, Jürgen
von Landesberger, Tatiana
Kohlhammer, Jörn
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Information Visualization ; 8 (2009), 1. - pp. 14-29. - ISSN 1473-8716
Abstract
Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Visual analytics,visual cluster analysis,self-organizing maps,trajectory data,time series data
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHRECK, Tobias, Jürgen BERNARD, Tatiana VON LANDESBERGER, Jörn KOHLHAMMER, 2009. Visual cluster analysis of trajectory data with interactive Kohonen maps. In: Information Visualization. 8(1), pp. 14-29. ISSN 1473-8716. Available under: doi: 10.1057/ivs.2008.29
BibTex
@article{Schreck2009Visua-17389,
  year={2009},
  doi={10.1057/ivs.2008.29},
  title={Visual cluster analysis of trajectory data with interactive Kohonen maps},
  number={1},
  volume={8},
  issn={1473-8716},
  journal={Information Visualization},
  pages={14--29},
  author={Schreck, Tobias and Bernard, Jürgen and von Landesberger, Tatiana and Kohlhammer, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17389">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17389/1/Schreck.pdf"/>
    <dc:contributor>Kohlhammer, Jörn</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kohlhammer, Jörn</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:37:24Z</dcterms:available>
    <dc:contributor>von Landesberger, Tatiana</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:37:24Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>Visual cluster analysis of trajectory data with interactive Kohonen maps</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>von Landesberger, Tatiana</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17389/1/Schreck.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17389"/>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Information Visualization ; 8 (2009), 1. - pp. 14-29</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.</dcterms:abstract>
    <dc:creator>Schreck, Tobias</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed