Visual cluster analysis of trajectory data with interactive Kohonen maps

Lade...
Vorschaubild
Dateien
Schreck.pdf
Schreck.pdfGröße: 8.19 MBDownloads: 1893
Datum
2009
Autor:innen
Bernard, Jürgen
von Landesberger, Tatiana
Kohlhammer, Jörn
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Visualization. 2009, 8(1), pp. 14-29. ISSN 1473-8716. Available under: doi: 10.1057/ivs.2008.29
Zusammenfassung

Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual analytics, visual cluster analysis, self-organizing maps, trajectory data, time series data
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHRECK, Tobias, Jürgen BERNARD, Tatiana VON LANDESBERGER, Jörn KOHLHAMMER, 2009. Visual cluster analysis of trajectory data with interactive Kohonen maps. In: Information Visualization. 2009, 8(1), pp. 14-29. ISSN 1473-8716. Available under: doi: 10.1057/ivs.2008.29
BibTex
@article{Schreck2009Visua-17389,
  year={2009},
  doi={10.1057/ivs.2008.29},
  title={Visual cluster analysis of trajectory data with interactive Kohonen maps},
  number={1},
  volume={8},
  issn={1473-8716},
  journal={Information Visualization},
  pages={14--29},
  author={Schreck, Tobias and Bernard, Jürgen and von Landesberger, Tatiana and Kohlhammer, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17389">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17389/1/Schreck.pdf"/>
    <dc:contributor>Kohlhammer, Jörn</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kohlhammer, Jörn</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:37:24Z</dcterms:available>
    <dc:contributor>von Landesberger, Tatiana</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:37:24Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>Visual cluster analysis of trajectory data with interactive Kohonen maps</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>von Landesberger, Tatiana</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17389/1/Schreck.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17389"/>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Information Visualization ; 8 (2009), 1. - pp. 14-29</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.</dcterms:abstract>
    <dc:creator>Schreck, Tobias</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen