Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2006
Autor:innen
Leibfritz, Friedemann
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Linear Algebra and its Applications. 2006, 415(2-3), pp. 542-575. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2004.12.024
Zusammenfassung

The design of an optimal (output feedback) reduced order control (ROC) law for a dynamic control system is an important example of a difficult and in general non-convex (nonlinear) optimal control problem. In this paper we present a novel numerical strategy to the solution of the ROC design problem if the control system is described by partial differential equations (PDE). The discretization of the ROC problem with PDE constraints leads to a large scale (non-convex) nonlinear semidefinite program (NSDP). For reducing the size of the high dimensional control system, first, we apply a proper orthogonal decomposition (POD) method to the discretized PDE. The POD approach leads to a low dimensional model of the control system. Thereafter, we solve the corresponding small-sized NSDP by a fully iterative interior point constraint trust region (IPCTR) algorithm. IPCTR is designed to take advantage of the special structure of the NSDP. Finally, the solution is a ROC for the low dimensional approximation of the control system. In our numerical examples we demonstrate that the reduced order controller computed from the small scaled problem can be used to control the large scale approximation of the PDE system.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690LEIBFRITZ, Friedemann, Stefan VOLKWEIN, 2006. Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming. In: Linear Algebra and its Applications. 2006, 415(2-3), pp. 542-575. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2004.12.024
BibTex
@article{Leibfritz2006-06Reduc-41201,
  year={2006},
  doi={10.1016/j.laa.2004.12.024},
  title={Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming},
  number={2-3},
  volume={415},
  issn={0024-3795},
  journal={Linear Algebra and its Applications},
  pages={542--575},
  author={Leibfritz, Friedemann and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41201">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41201"/>
    <dcterms:title>Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming</dcterms:title>
    <dcterms:abstract xml:lang="eng">The design of an optimal (output feedback) reduced order control (ROC) law for a dynamic control system is an important example of a difficult and in general non-convex (nonlinear) optimal control problem. In this paper we present a novel numerical strategy to the solution of the ROC design problem if the control system is described by partial differential equations (PDE). The discretization of the ROC problem with PDE constraints leads to a large scale (non-convex) nonlinear semidefinite program (NSDP). For reducing the size of the high dimensional control system, first, we apply a proper orthogonal decomposition (POD) method to the discretized PDE. The POD approach leads to a low dimensional model of the control system. Thereafter, we solve the corresponding small-sized NSDP by a fully iterative interior point constraint trust region (IPCTR) algorithm. IPCTR is designed to take advantage of the special structure of the NSDP. Finally, the solution is a ROC for the low dimensional approximation of the control system. In our numerical examples we demonstrate that the reduced order controller computed from the small scaled problem can be used to control the large scale approximation of the PDE system.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T09:48:40Z</dcterms:available>
    <dcterms:issued>2006-06</dcterms:issued>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:creator>Leibfritz, Friedemann</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T09:48:40Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:contributor>Leibfritz, Friedemann</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen