Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The design of an optimal (output feedback) reduced order control (ROC) law for a dynamic control system is an important example of a difficult and in general non-convex (nonlinear) optimal control problem. In this paper we present a novel numerical strategy to the solution of the ROC design problem if the control system is described by partial differential equations (PDE). The discretization of the ROC problem with PDE constraints leads to a large scale (non-convex) nonlinear semidefinite program (NSDP). For reducing the size of the high dimensional control system, first, we apply a proper orthogonal decomposition (POD) method to the discretized PDE. The POD approach leads to a low dimensional model of the control system. Thereafter, we solve the corresponding small-sized NSDP by a fully iterative interior point constraint trust region (IPCTR) algorithm. IPCTR is designed to take advantage of the special structure of the NSDP. Finally, the solution is a ROC for the low dimensional approximation of the control system. In our numerical examples we demonstrate that the reduced order controller computed from the small scaled problem can be used to control the large scale approximation of the PDE system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LEIBFRITZ, Friedemann, Stefan VOLKWEIN, 2006. Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming. In: Linear Algebra and its Applications. 2006, 415(2-3), pp. 542-575. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2004.12.024BibTex
@article{Leibfritz2006-06Reduc-41201, year={2006}, doi={10.1016/j.laa.2004.12.024}, title={Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming}, number={2-3}, volume={415}, issn={0024-3795}, journal={Linear Algebra and its Applications}, pages={542--575}, author={Leibfritz, Friedemann and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41201"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41201"/> <dcterms:title>Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming</dcterms:title> <dcterms:abstract xml:lang="eng">The design of an optimal (output feedback) reduced order control (ROC) law for a dynamic control system is an important example of a difficult and in general non-convex (nonlinear) optimal control problem. In this paper we present a novel numerical strategy to the solution of the ROC design problem if the control system is described by partial differential equations (PDE). The discretization of the ROC problem with PDE constraints leads to a large scale (non-convex) nonlinear semidefinite program (NSDP). For reducing the size of the high dimensional control system, first, we apply a proper orthogonal decomposition (POD) method to the discretized PDE. The POD approach leads to a low dimensional model of the control system. Thereafter, we solve the corresponding small-sized NSDP by a fully iterative interior point constraint trust region (IPCTR) algorithm. IPCTR is designed to take advantage of the special structure of the NSDP. Finally, the solution is a ROC for the low dimensional approximation of the control system. In our numerical examples we demonstrate that the reduced order controller computed from the small scaled problem can be used to control the large scale approximation of the PDE system.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T09:48:40Z</dcterms:available> <dcterms:issued>2006-06</dcterms:issued> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Leibfritz, Friedemann</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T09:48:40Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:contributor>Leibfritz, Friedemann</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>