Relaxation of single-electron spin qubits in silicon in the presence of interface steps
Relaxation of single-electron spin qubits in silicon in the presence of interface steps
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review B ; 104 (2021), 8. - 085309. - American Physical Society (APS). - ISSN 2469-9950. - eISSN 2469-9969
Zusammenfassung
We develop a valley-dependent envelope function theory that can describe the effects of arbitrary configurations of interface steps and miscuts on the qubit relaxation time. For a given interface roughness, we show how our theory can be used to find the valley-dependent dipole matrix elements, the valley splitting, and the spin-valley coupling as a function of the electromagnetic fields in a Si/SiGe quantum dot spin qubit. We demonstrate that our theory can quantitatively reproduce and explain the result of experimental measurements for the spin relaxation time with only a minimal set of free parameters. Investigating the sample dependence of spin relaxation, we find that at certain conditions for a disordered quantum dot, the spin-valley coupling vanishes. This, in turn, completely blocks the valley-induced qubit decay. We show that the presence of interface steps can in general give rise to a strongly anisotropic behavior of the spin relaxation time. Remarkably, by properly tuning the gate-induced out-of-plane electric field, it is possible to turn the spin-valley hot spot into a “cold spot” at which the relaxation time is significantly prolonged and where the spin relaxation time is additionally first-order insensitive to the fluctuations of the magnetic field. This electrical tunability enables on-demand fast qubit reset and initialization that is critical for many quantum algorithms and error correction schemes. We therefore argue that the valley degree of freedom can be used as an advantage for Si spin qubits.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
HOSSEINKHANI, Amin, Guido BURKARD, 2021. Relaxation of single-electron spin qubits in silicon in the presence of interface steps. In: Physical Review B. American Physical Society (APS). 104(8), 085309. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.104.085309BibTex
@article{Hosseinkhani2021Relax-54876, year={2021}, doi={10.1103/PhysRevB.104.085309}, title={Relaxation of single-electron spin qubits in silicon in the presence of interface steps}, number={8}, volume={104}, issn={2469-9950}, journal={Physical Review B}, author={Hosseinkhani, Amin and Burkard, Guido}, note={Article Number: 085309} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54876"> <dcterms:issued>2021</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hosseinkhani, Amin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-16T06:53:38Z</dcterms:available> <dc:contributor>Burkard, Guido</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-16T06:53:38Z</dc:date> <dcterms:title>Relaxation of single-electron spin qubits in silicon in the presence of interface steps</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54876"/> <dcterms:abstract xml:lang="eng">We develop a valley-dependent envelope function theory that can describe the effects of arbitrary configurations of interface steps and miscuts on the qubit relaxation time. For a given interface roughness, we show how our theory can be used to find the valley-dependent dipole matrix elements, the valley splitting, and the spin-valley coupling as a function of the electromagnetic fields in a Si/SiGe quantum dot spin qubit. We demonstrate that our theory can quantitatively reproduce and explain the result of experimental measurements for the spin relaxation time with only a minimal set of free parameters. Investigating the sample dependence of spin relaxation, we find that at certain conditions for a disordered quantum dot, the spin-valley coupling vanishes. This, in turn, completely blocks the valley-induced qubit decay. We show that the presence of interface steps can in general give rise to a strongly anisotropic behavior of the spin relaxation time. Remarkably, by properly tuning the gate-induced out-of-plane electric field, it is possible to turn the spin-valley hot spot into a “cold spot” at which the relaxation time is significantly prolonged and where the spin relaxation time is additionally first-order insensitive to the fluctuations of the magnetic field. This electrical tunability enables on-demand fast qubit reset and initialization that is critical for many quantum algorithms and error correction schemes. We therefore argue that the valley degree of freedom can be used as an advantage for Si spin qubits.</dcterms:abstract> <dc:creator>Burkard, Guido</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Hosseinkhani, Amin</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja