Network ensemble clustering using latent roles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a clustering method for collections of graphs based on the assumptions that graphs in the same cluster have a similar role structure and that the respective roles can be founded on implicit vertex types. Given a network ensemble (a collection of attributed graphs with some substantive commonality), we start by partitioning the set of all vertices based on attribute similarity. Projection of each graph onto the resulting vertex types yields feature vectors of equal dimensionality, irrespective of the original graph sizes. These feature vectors are then subjected to standard clustering methods. This approach is motivated by social network concepts, and we demonstrate its utility on an ensemble of personal networks of migrants, where we extract structurally similar groups and show their resemblance to predicted acculturation strategies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRANDES, Ulrik, Jürgen LERNER, Uwe NAGEL, 2010. Network ensemble clustering using latent roles. In: Advances in Data Analysis and Classification. 2010, 5(2), pp. 81-94. ISSN 1862-5347. Available under: doi: 10.1007/s11634-010-0074-3BibTex
@article{Brandes2010Netwo-325, year={2010}, doi={10.1007/s11634-010-0074-3}, title={Network ensemble clustering using latent roles}, number={2}, volume={5}, issn={1862-5347}, journal={Advances in Data Analysis and Classification}, pages={81--94}, author={Brandes, Ulrik and Lerner, Jürgen and Nagel, Uwe} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/325"> <dcterms:title>Network ensemble clustering using latent roles</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/325/1/Brandes.pdf"/> <dcterms:bibliographicCitation>First publ. in: Advances in Data Analysis and Classification 5 (2011), 2, pp. 81-94</dcterms:bibliographicCitation> <dc:contributor>Lerner, Jürgen</dc:contributor> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Nagel, Uwe</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-20T09:51:20Z</dc:date> <dc:creator>Nagel, Uwe</dc:creator> <dc:creator>Lerner, Jürgen</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/325"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/325/1/Brandes.pdf"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We present a clustering method for collections of graphs based on the assumptions that graphs in the same cluster have a similar role structure and that the respective roles can be founded on implicit vertex types. Given a network ensemble (a collection of attributed graphs with some substantive commonality), we start by partitioning the set of all vertices based on attribute similarity. Projection of each graph onto the resulting vertex types yields feature vectors of equal dimensionality, irrespective of the original graph sizes. These feature vectors are then subjected to standard clustering methods. This approach is motivated by social network concepts, and we demonstrate its utility on an ensemble of personal networks of migrants, where we extract structurally similar groups and show their resemblance to predicted acculturation strategies.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:creator>Brandes, Ulrik</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-31T22:25:05Z</dcterms:available> </rdf:Description> </rdf:RDF>