Stabilität elastodynamischer Schockwellen

Lade...
Vorschaubild
Dateien
Schlipf_2-2jdfhnuzr67n4.pdf
Schlipf_2-2jdfhnuzr67n4.pdfGröße: 5.65 MBDownloads: 96
Datum
2023
Autor:innen
Schlipf, Markus
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Zusammenfassung in einer weiteren Sprache

In this dissertation we consider planar shock-waves both in isentropic gas dynamics and in elastodynamics in two space dimensions. In the theory of hyperbolic systems, shock-waves are represented by weak solutions to nonlinear systems of conservation laws, satisfying jump conditions on a smooth hypersurface as well as entropy conditions motivated by physics. Given a reference shock-solution of the conservation laws and a multidimensional perturbation of the initial data or a small wave impinging on the shock-front, one may ask for the stability of the shock, i.e. if the shock-structure persists under perturbation. Due to the fundamental work of A. Majda and A. M. Blokhin, the question regarding nonlinear stability can be answered by analyzing a stability function known as the Lopatinski-determinant. Considering the equations of isentropic elastodynamics in eulerian coordinates, we aim to give explicit expressions of stability-separatrices using the Lopatinski-determinant. The latter equations are supplemented by additional divergence constraints allowing to write them as a symmetric hyperbolic system at the cost of losing the conservative form. By considering the so-called beta-model which was firstly proposed by Barker, Monteiro & Zumbrun in 2021 for MHD-LAX-shocks, we are able to present for the first time an explicit expression of the Lopatinski-determinant for compressive LAX-shocks in isentropic inviscid elastodynamics for general deformations. And by monotonicity arguments on specific intervals a way to calculate the boundaries of the stability domains analytically.

Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Elastodynamik, LAX-Schocks, Strukturelle Stabilität, Lopatinski-Determinante
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHLIPF, Markus, 2023. Stabilität elastodynamischer Schockwellen [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Schlipf2023Stabi-66050,
  year={2023},
  title={Stabilität elastodynamischer Schockwellen},
  author={Schlipf, Markus},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66050">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Stabilität elastodynamischer Schockwellen</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-13T06:44:35Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66050/6/Schlipf_2-2jdfhnuzr67n4.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schlipf, Markus</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-sa/4.0/"/>
    <dc:rights>Attribution-ShareAlike 4.0 International</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schlipf, Markus</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66050/6/Schlipf_2-2jdfhnuzr67n4.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-13T06:44:35Z</dc:date>
    <dcterms:issued>2023</dcterms:issued>
    <dc:language>deu</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66050"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
February 1, 2023
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2023
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen