Publikation: Appendix to: Convexity estimates for flows by powers of the mean curvature
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2006
Autor:innen
Schulze, Felix
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Annali della Scuola Normale Superiore di Pisa : Classe di Scienze. 2006, 5(5), pp. 273-277. ISSN 0036-9918
Zusammenfassung
We study the evolution of a closed, convex hypersurface in Rn+1 in direction of its normal vector, where the speed equals a power k≥1 of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to 1, depending only on k and n, then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHULZE, Felix, Oliver C. SCHNÜRER, 2006. Appendix to: Convexity estimates for flows by powers of the mean curvature. In: Annali della Scuola Normale Superiore di Pisa : Classe di Scienze. 2006, 5(5), pp. 273-277. ISSN 0036-9918BibTex
@article{Schulze2006Appen-41191, year={2006}, title={Appendix to: Convexity estimates for flows by powers of the mean curvature}, url={http://www.numdam.org/item/ASNSP_2006_5_5_2_261_0}, number={5}, volume={5}, issn={0036-9918}, journal={Annali della Scuola Normale Superiore di Pisa : Classe di Scienze}, pages={273--277}, author={Schulze, Felix and Schnürer, Oliver C.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41191"> <dc:creator>Schnürer, Oliver C.</dc:creator> <dc:contributor>Schulze, Felix</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:16:13Z</dcterms:available> <dcterms:title>Appendix to: Convexity estimates for flows by powers of the mean curvature</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:16:13Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41191"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2006</dcterms:issued> <dc:creator>Schulze, Felix</dc:creator> <dcterms:abstract xml:lang="eng">We study the evolution of a closed, convex hypersurface in Rn+1 in direction of its normal vector, where the speed equals a power k≥1 of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to 1, depending only on k and n, then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL der Originalveröffentl.
Prüfdatum der URL
2018-01-12
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein