Publikation:

Making big sense from big data in toxicology by read-across

Lade...
Vorschaubild

Dateien

Hartung_0-365884.pdf
Hartung_0-365884.pdfGröße: 1.46 MBDownloads: 451

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Alternatives to Animal Experimentation : ALTEX. 2016, 33(2), pp. 83-93. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1603091

Zusammenfassung

Modern information technologies have made big data available in safety sciences, i.e., extremely large data sets that may be analyzed only computationally to reveal patterns, trends and associations. This happens by (1) compilation of large sets of existing data, e.g., as a result of the European REACH regulation, (2) the use of omics technologies and (3) systematic robotized testing in a high-throughput manner. All three approaches and some other high-content technologies leave us with big data--the challenge is now to make big sense of these data. Read-across, i.e., the local similarity-based intrapolation of properties, is gaining momentum with increasing data availability and consensus on how to process and report it. It is predominantly applied to in vivo test data as a gap-filling approach, but can similarly complement other incomplete datasets. Big data are first of all repositories for finding similar substances and ensure that the available data is fully exploited. High-content and high-throughput approaches similarly require focusing on clusters, in this case formed by underlying mechanisms such as pathways of toxicity. The closely connected properties, i.e., structural and biological similarity, create the confidence needed for predictions of toxic properties. Here, a new web-based tool under development called REACH-across, which aims to support and automate structure-based read-across, is presented among others.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690HARTUNG, Thomas, 2016. Making big sense from big data in toxicology by read-across. In: Alternatives to Animal Experimentation : ALTEX. 2016, 33(2), pp. 83-93. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1603091
BibTex
@article{Hartung2016Makin-35555,
  year={2016},
  doi={10.14573/altex.1603091},
  title={Making big sense from big data in toxicology by read-across},
  number={2},
  volume={33},
  issn={0946-7785},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={83--93},
  author={Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35555">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Making big sense from big data in toxicology by read-across</dcterms:title>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35555"/>
    <dcterms:abstract xml:lang="eng">Modern information technologies have made big data available in safety sciences, i.e., extremely large data sets that may be analyzed only computationally to reveal patterns, trends and associations. This happens by (1) compilation of large sets of existing data, e.g., as a result of the European REACH regulation, (2) the use of omics technologies and (3) systematic robotized testing in a high-throughput manner. All three approaches and some other high-content technologies leave us with big data--the challenge is now to make big sense of these data. Read-across, i.e., the local similarity-based intrapolation of properties, is gaining momentum with increasing data availability and consensus on how to process and report it. It is predominantly applied to in vivo test data as a gap-filling approach, but can similarly complement other incomplete datasets. Big data are first of all repositories for finding similar substances and ensure that the available data is fully exploited. High-content and high-throughput approaches similarly require focusing on clusters, in this case formed by underlying mechanisms such as pathways of toxicity. The closely connected properties, i.e., structural and biological similarity, create the confidence needed for predictions of toxic properties. Here, a new web-based tool under development called REACH-across, which aims to support and automate structure-based read-across, is presented among others.</dcterms:abstract>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-13T09:11:08Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35555/3/Hartung_0-365884.pdf"/>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35555/3/Hartung_0-365884.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-13T09:11:08Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen