Graphical Causal Models for Survey Inference
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of bias and assumptions for eliminating it in various selection scenarios. We then introduce and analyze graphical representations of multiple selection stages in the data collection process, and highlight the strong assumptions implicit in using only design weights. Furthermore, we show that the common practice of selecting adjustment variables based on correlations with sample selection and outcome variables of interest is ill-justified and that nonresponse weighting when the interest is in causal inference may come at severe costs. Finally, we identify further areas for survey methodology research that can benefit from advances in causal graph theory.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHÜSSLER, Julian, Peter SELB, 2023. Graphical Causal Models for Survey Inference. In: Sociological Methods & Research. Sage. ISSN 0049-1241. eISSN 1552-8294. Available under: doi: 10.1177/00491241231176851BibTex
@article{Schussler2023Graph-67897, year={2023}, doi={10.1177/00491241231176851}, title={Graphical Causal Models for Survey Inference}, issn={0049-1241}, journal={Sociological Methods & Research}, author={Schüssler, Julian and Selb, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67897"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Selb, Peter</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract>Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of bias and assumptions for eliminating it in various selection scenarios. We then introduce and analyze graphical representations of multiple selection stages in the data collection process, and highlight the strong assumptions implicit in using only design weights. Furthermore, we show that the common practice of selecting adjustment variables based on correlations with sample selection and outcome variables of interest is ill-justified and that nonresponse weighting when the interest is in causal inference may come at severe costs. Finally, we identify further areas for survey methodology research that can benefit from advances in causal graph theory.</dcterms:abstract> <dcterms:title>Graphical Causal Models for Survey Inference</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:language>eng</dc:language> <dc:contributor>Selb, Peter</dc:contributor> <dc:contributor>Schüssler, Julian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-10-06T06:53:44Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Schüssler, Julian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-10-06T06:53:44Z</dc:date> <dcterms:issued>2023</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67897"/> </rdf:Description> </rdf:RDF>