Publikation:

A computational method to reveal psychological constructs from text data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Herderich, Alina
Freudenthaler, Heribert H.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Psychological Methods. American Psychological Association (APA). ISSN 1082-989X. eISSN 1939-1463. Verfügbar unter: doi: 10.1037/met0000700

Zusammenfassung

When starting to formalize psychological constructs, researchers traditionally rely on two distinct approaches: the quantitative approach, which defines constructs as part of a testable theory based on prior research and domain knowledge often deploying self-report questionnaires, or the qualitative approach, which gathers data mostly in the form of text and bases construct definitions on exploratory analyses. Quantitative research might lead to an incomplete understanding of the construct, while qualitative research is limited due to challenges in the systematic data processing, especially at large scale. We present a new computational method that combines the comprehensiveness of qualitative research and the scalability of quantitative analyses to define psychological constructs from semistructured text data. Based on structured questions, participants are prompted to generate sentences reflecting instances of the construct of interest. We apply computational methods to calculate embeddings as numerical representations of the sentences, which we then run through a clustering algorithm to arrive at groupings of sentences as psychologically relevant classes. The method includes steps for the measurement and correction of bias introduced by the data generation, and the assessment of cluster validity according to human judgment. We demonstrate the applicability of our method on an example from emotion regulation. Based on short descriptions of emotion regulation attempts collected through an open-ended situational judgment test, we use our method to derive classes of emotion regulation strategies. Our approach shows how machine learning and psychology can be combined to provide new perspectives on the conceptualization of psychological processes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690HERDERICH, Alina, Heribert H. FREUDENTHALER, David GARCIA, 2024. A computational method to reveal psychological constructs from text data. In: Psychological Methods. American Psychological Association (APA). ISSN 1082-989X. eISSN 1939-1463. Verfügbar unter: doi: 10.1037/met0000700
BibTex
@article{Herderich2024-09-19compu-71738,
  year={2024},
  doi={10.1037/met0000700},
  title={A computational method to reveal psychological constructs from text data},
  issn={1082-989X},
  journal={Psychological Methods},
  author={Herderich, Alina and Freudenthaler, Heribert H. and Garcia, David}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71738">
    <dc:contributor>Herderich, Alina</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-19T07:52:19Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:issued>2024-09-19</dcterms:issued>
    <dcterms:abstract>When starting to formalize psychological constructs, researchers traditionally rely on two distinct approaches: the quantitative approach, which defines constructs as part of a testable theory based on prior research and domain knowledge often deploying self-report questionnaires, or the qualitative approach, which gathers data mostly in the form of text and bases construct definitions on exploratory analyses. Quantitative research might lead to an incomplete understanding of the construct, while qualitative research is limited due to challenges in the systematic data processing, especially at large scale. We present a new computational method that combines the comprehensiveness of qualitative research and the scalability of quantitative analyses to define psychological constructs from semistructured text data. Based on structured questions, participants are prompted to generate sentences reflecting instances of the construct of interest. We apply computational methods to calculate embeddings as numerical representations of the sentences, which we then run through a clustering algorithm to arrive at groupings of sentences as psychologically relevant classes. The method includes steps for the measurement and correction of bias introduced by the data generation, and the assessment of cluster validity according to human judgment. We demonstrate the applicability of our method on an example from emotion regulation. Based on short descriptions of emotion regulation attempts collected through an open-ended situational judgment test, we use our method to derive classes of emotion regulation strategies. Our approach shows how machine learning and psychology can be combined to provide new perspectives on the conceptualization of psychological processes.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:title>A computational method to reveal psychological constructs from text data</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Garcia, David</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Freudenthaler, Heribert H.</dc:contributor>
    <dc:creator>Herderich, Alina</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-19T07:52:19Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71738"/>
    <dc:creator>Freudenthaler, Heribert H.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen