A Positivity-preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System

Loading...
Thumbnail Image
Date
2000
Authors
Jüngel, Ansgar
Pinnau, René
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 112
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
A positivity-preserving numerical scheme for a fourth order nonlinear parabolic system arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential and a subsequent semidiscretization in time. The resulting sequence of nonlinear second order elliptic systems admits at each time level strictly positive solutions, which is proved by an exponential transformation of variables. The stability of the scheme is shown and convergence is proved in one space dimension. The results extend under additional assumptions to the multi-dimensional case. Assuming enough regularity on the solution the rate of convergence proves to be optimal. Numerical results concerning the switching behaviour of a resonant tunneling diode are presented.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JÜNGEL, Ansgar, René PINNAU, 2000. A Positivity-preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System
BibTex
@unpublished{Jungel2000Posit-6224,
  year={2000},
  title={A Positivity-preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System},
  author={Jüngel, Ansgar and Pinnau, René}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6224">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6224/1/preprint_112.pdf"/>
    <dc:creator>Pinnau, René</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6224"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Jüngel, Ansgar</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:22Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:22Z</dcterms:available>
    <dcterms:title>A Positivity-preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System</dcterms:title>
    <dc:creator>Jüngel, Ansgar</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">A positivity-preserving numerical scheme for a fourth order nonlinear parabolic system arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential and a subsequent semidiscretization in time. The resulting sequence of nonlinear second order elliptic systems admits at each time level strictly positive solutions, which is proved by an exponential transformation of variables. The stability of the scheme is shown and convergence is proved in one space dimension. The results extend under additional assumptions to the multi-dimensional case. Assuming enough regularity on the solution the rate of convergence proves to be optimal. Numerical results concerning the switching behaviour of a resonant tunneling diode are presented.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Pinnau, René</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6224/1/preprint_112.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>2000</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed