Energy Saving of Schooling Robotic Fish in Three-Dimensional Formations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
It has long been proposed that animals flying in the air and swimming in the water could extract energy from neighbour-induced flows. A large number of mechanisms have been proposed to explain whether, and if so how, animals can save energy by moving in two-dimensional (2D) formations-individuals swim in the horizontal plane. Seldom studies explore the mechanisms in three-dimensional (3D) formations-individuals swim in both horizontal and vertical planes, even though most animals perform 3D behaviour. In this letter, taking a pair of bio-inspired robotic fish as experimental physical models, we explore the energy cost of the follower when swimming close to a neighbour in 3D formations (mainly in the vertical plane). We found the cost of the follower is mainly affected by how it spatiotemporally interacts with the 3D vortices shed by the neighbour in 3D formations. A simple linear correlation was found between the spatial factor (the height difference) and temporal factor (the body phase difference) when the follower saves most energy compared to swimming alone. Preliminary flow visualisations and 3D computational fluid dynamic simulations show this is due to the structure of vortices along the span of the caudal fin's trailing edge. Our studies shed new light on the energy saving control of multiple artificial underwater robots in 3D formations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Liang, Xingwen ZHENG, Rui MAO, Guanming XIE, 2021. Energy Saving of Schooling Robotic Fish in Three-Dimensional Formations. In: IEEE Robotics and Automation Letters. IEEE. 2021, 6(2), pp. 1694-1699. ISSN 2377-3774. eISSN 2377-3766. Available under: doi: 10.1109/LRA.2021.3059629BibTex
@article{Li2021Energ-53409, year={2021}, doi={10.1109/LRA.2021.3059629}, title={Energy Saving of Schooling Robotic Fish in Three-Dimensional Formations}, number={2}, volume={6}, issn={2377-3774}, journal={IEEE Robotics and Automation Letters}, pages={1694--1699}, author={Li, Liang and Zheng, Xingwen and Mao, Rui and Xie, Guanming} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53409"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T09:19:26Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T09:19:26Z</dcterms:available> <dc:contributor>Xie, Guanming</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Xie, Guanming</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Li, Liang</dc:contributor> <dc:contributor>Zheng, Xingwen</dc:contributor> <dcterms:title>Energy Saving of Schooling Robotic Fish in Three-Dimensional Formations</dcterms:title> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Mao, Rui</dc:contributor> <dc:creator>Li, Liang</dc:creator> <dc:creator>Mao, Rui</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53409"/> <dcterms:abstract xml:lang="eng">It has long been proposed that animals flying in the air and swimming in the water could extract energy from neighbour-induced flows. A large number of mechanisms have been proposed to explain whether, and if so how, animals can save energy by moving in two-dimensional (2D) formations-individuals swim in the horizontal plane. Seldom studies explore the mechanisms in three-dimensional (3D) formations-individuals swim in both horizontal and vertical planes, even though most animals perform 3D behaviour. In this letter, taking a pair of bio-inspired robotic fish as experimental physical models, we explore the energy cost of the follower when swimming close to a neighbour in 3D formations (mainly in the vertical plane). We found the cost of the follower is mainly affected by how it spatiotemporally interacts with the 3D vortices shed by the neighbour in 3D formations. A simple linear correlation was found between the spatial factor (the height difference) and temporal factor (the body phase difference) when the follower saves most energy compared to swimming alone. Preliminary flow visualisations and 3D computational fluid dynamic simulations show this is due to the structure of vortices along the span of the caudal fin's trailing edge. Our studies shed new light on the energy saving control of multiple artificial underwater robots in 3D formations.</dcterms:abstract> <dc:creator>Zheng, Xingwen</dc:creator> </rdf:Description> </rdf:RDF>