Speculative Execution for Guided Visual Analytics
Speculative Execution for Guided Visual Analytics
Loading...
Date
2018
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS
Abstract
We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS, Oct 22, 2018, Berlin
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SPERRLE, Fabian, Jürgen BERNARD, Michael SEDLMAIR, Daniel A. KEIM, Mennatallah EL-ASSADY, 2018. Speculative Execution for Guided Visual Analytics. Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS. Berlin, Oct 22, 2018. In: Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VISBibTex
@inproceedings{Sperrle2018Specu-45049, year={2018}, title={Speculative Execution for Guided Visual Analytics}, url={https://scibib.dbvis.de/publications/view/774}, booktitle={Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS}, author={Sperrle, Fabian and Bernard, Jürgen and Sedlmair, Michael and Keim, Daniel A. and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45049"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:11:41Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45049/1/Sperrle_2-1vfpbv3lvivg2.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:11:41Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2018</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Bernard, Jürgen</dc:creator> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Sperrle, Fabian</dc:contributor> <dc:creator>Sedlmair, Michael</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45049"/> <dc:contributor>Bernard, Jürgen</dc:contributor> <dc:creator>Sperrle, Fabian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:abstract xml:lang="eng">We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.</dcterms:abstract> <dcterms:title>Speculative Execution for Guided Visual Analytics</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45049/1/Sperrle_2-1vfpbv3lvivg2.pdf"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL of original publication
Test date of URL
2019-02-14
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes