Speculative Execution for Guided Visual Analytics

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS. 2018
Zusammenfassung

We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS, 22. Okt. 2018, Berlin
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SPERRLE, Fabian, Jürgen BERNARD, Michael SEDLMAIR, Daniel A. KEIM, Mennatallah EL-ASSADY, 2018. Speculative Execution for Guided Visual Analytics. Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS. Berlin, 22. Okt. 2018. In: Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS. 2018
BibTex
@inproceedings{Sperrle2018Specu-45049,
  year={2018},
  title={Speculative Execution for Guided Visual Analytics},
  url={https://scibib.dbvis.de/publications/view/774},
  booktitle={Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS},
  author={Sperrle, Fabian and Bernard, Jürgen and Sedlmair, Michael and Keim, Daniel A. and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45049">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:11:41Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45049/1/Sperrle_2-1vfpbv3lvivg2.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:11:41Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45049"/>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:creator>Sperrle, Fabian</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dcterms:abstract xml:lang="eng">We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.</dcterms:abstract>
    <dcterms:title>Speculative Execution for Guided Visual Analytics</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45049/1/Sperrle_2-1vfpbv3lvivg2.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2019-02-14
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen