Speculative Execution for Guided Visual Analytics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPERRLE, Fabian, Jürgen BERNARD, Michael SEDLMAIR, Daniel A. KEIM, Mennatallah EL-ASSADY, 2018. Speculative Execution for Guided Visual Analytics. Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS. Berlin, 22. Okt. 2018. In: Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS. 2018BibTex
@inproceedings{Sperrle2018Specu-45049, year={2018}, title={Speculative Execution for Guided Visual Analytics}, url={https://scibib.dbvis.de/publications/view/774}, booktitle={Workshop for Machine Learning from User Interaction for Visualization and Analytics at IEEE VIS}, author={Sperrle, Fabian and Bernard, Jürgen and Sedlmair, Michael and Keim, Daniel A. and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45049"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:11:41Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45049/1/Sperrle_2-1vfpbv3lvivg2.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:11:41Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2018</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Bernard, Jürgen</dc:creator> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Sperrle, Fabian</dc:contributor> <dc:creator>Sedlmair, Michael</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45049"/> <dc:contributor>Bernard, Jürgen</dc:contributor> <dc:creator>Sperrle, Fabian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:abstract xml:lang="eng">We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.</dcterms:abstract> <dcterms:title>Speculative Execution for Guided Visual Analytics</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45049/1/Sperrle_2-1vfpbv3lvivg2.pdf"/> </rdf:Description> </rdf:RDF>