An Efficient Approach to Clustering in Large Multimedia Databases with Noise
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Several clustering algorithms can be applied to clustering in large multimedia databases. The effectiveness and efficiency of the existing algorithms, however, is somewhat limited, since clustering in multimedia databases requires clustering high-dimensional feature vectors and since multimedia databases often contain large amounts of noise. In this paper, we therefore introduce a new algorithm to clustering in large multimedia databases called DENCLUE (DENsitybased CLUstEring). The basic idea of our new approach is to model the overall point density analytically as the sum of influence functions of the data points. Clusters can then be identified by determining density-at tractors and clusters of arbitrary shape can be easily described by a simple equation based on the overall density function. The advantages of our new approach are (1) it has a finn mathematical basis, (2) it has good clustering properties in data sets with large amounts of noise, (3) it allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets and (4) it is significantly faster than existing algorithms. To demonstrate the effectiveness and efficiency of DENCLUE, we perform a series of experiments on a number of different data sets from CAD and molecular biology. A comparison with DBSCAN shows the superiority of our new approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HINNEBURG, Alexander, Daniel A. KEIM, 1998. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Knowledge Discovery and Datamining (KDD'98). New York, NY, 1998. In: Proceedings of the 4 th International Conference on Knowledge Discovery and Datamining (KDD ' 98), New York, NY, September, 1998. 1998, pp. 58-65BibTex
@inproceedings{Hinneburg1998Effic-5816, year={1998}, title={An Efficient Approach to Clustering in Large Multimedia Databases with Noise}, booktitle={Proceedings of the 4 th International Conference on Knowledge Discovery and Datamining (KDD ' 98), New York, NY, September, 1998}, pages={58--65}, author={Hinneburg, Alexander and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5816"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:21Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5816/1/kdd98.pdf"/> <dcterms:issued>1998</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5816"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:21Z</dcterms:available> <dc:creator>Hinneburg, Alexander</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5816/1/kdd98.pdf"/> <dc:format>application/pdf</dc:format> <dc:language>eng</dc:language> <dcterms:title>An Efficient Approach to Clustering in Large Multimedia Databases with Noise</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: Proceedings of the 4th International Conference on Knowledge Discovery and Datamining (KDD'98), New York, NY, September, 1998, pp. 58-65</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:abstract xml:lang="eng">Several clustering algorithms can be applied to clustering in large multimedia databases. The effectiveness and efficiency of the existing algorithms, however, is somewhat limited, since clustering in multimedia databases requires clustering high-dimensional feature vectors and since multimedia databases often contain large amounts of noise. In this paper, we therefore introduce a new algorithm to clustering in large multimedia databases called DENCLUE (DENsitybased CLUstEring). The basic idea of our new approach is to model the overall point density analytically as the sum of influence functions of the data points. Clusters can then be identified by determining density-at tractors and clusters of arbitrary shape can be easily described by a simple equation based on the overall density function. The advantages of our new approach are (1) it has a finn mathematical basis, (2) it has good clustering properties in data sets with large amounts of noise, (3) it allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets and (4) it is significantly faster than existing algorithms. To demonstrate the effectiveness and efficiency of DENCLUE, we perform a series of experiments on a number of different data sets from CAD and molecular biology. A comparison with DBSCAN shows the superiority of our new approach.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>