An Efficient Approach to Clustering in Large Multimedia Databases with Noise

Lade...
Vorschaubild
Dateien
kdd98.pdf
kdd98.pdfGröße: 1.07 MBDownloads: 783
Datum
1998
Autor:innen
Hinneburg, Alexander
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings of the 4 th International Conference on Knowledge Discovery and Datamining (KDD ' 98), New York, NY, September, 1998. 1998, pp. 58-65
Zusammenfassung

Several clustering algorithms can be applied to clustering in large multimedia databases. The effectiveness and efficiency of the existing algorithms, however, is somewhat limited, since clustering in multimedia databases requires clustering high-dimensional feature vectors and since multimedia databases often contain large amounts of noise. In this paper, we therefore introduce a new algorithm to clustering in large multimedia databases called DENCLUE (DENsitybased CLUstEring). The basic idea of our new approach is to model the overall point density analytically as the sum of influence functions of the data points. Clusters can then be identified by determining density-at tractors and clusters of arbitrary shape can be easily described by a simple equation based on the overall density function. The advantages of our new approach are (1) it has a finn mathematical basis, (2) it has good clustering properties in data sets with large amounts of noise, (3) it allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets and (4) it is significantly faster than existing algorithms. To demonstrate the effectiveness and efficiency of DENCLUE, we perform a series of experiments on a number of different data sets from CAD and molecular biology. A comparison with DBSCAN shows the superiority of our new approach.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Clustering Algorithms, Density-based Clustering, Clustering of High-dimensional Data, Clustering in Multimedia Databases
Konferenz
Knowledge Discovery and Datamining (KDD'98), 1998, New York, NY
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HINNEBURG, Alexander, Daniel A. KEIM, 1998. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Knowledge Discovery and Datamining (KDD'98). New York, NY, 1998. In: Proceedings of the 4 th International Conference on Knowledge Discovery and Datamining (KDD ' 98), New York, NY, September, 1998. 1998, pp. 58-65
BibTex
@inproceedings{Hinneburg1998Effic-5816,
  year={1998},
  title={An Efficient Approach to Clustering in Large Multimedia Databases with Noise},
  booktitle={Proceedings of the 4 th International Conference on Knowledge Discovery and Datamining (KDD ' 98), New York, NY, September, 1998},
  pages={58--65},
  author={Hinneburg, Alexander and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5816">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:21Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5816/1/kdd98.pdf"/>
    <dcterms:issued>1998</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5816"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:21Z</dcterms:available>
    <dc:creator>Hinneburg, Alexander</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5816/1/kdd98.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <dcterms:title>An Efficient Approach to Clustering in Large Multimedia Databases with Noise</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the 4th International Conference on Knowledge Discovery and Datamining (KDD'98), New York, NY, September, 1998, pp. 58-65</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">Several clustering algorithms can be applied to clustering in large multimedia databases. The effectiveness and efficiency of the existing algorithms, however, is somewhat limited, since clustering in multimedia databases requires clustering high-dimensional feature vectors and since multimedia databases often contain large amounts of noise. In this paper, we therefore introduce a new algorithm to clustering in large multimedia databases called DENCLUE (DENsitybased CLUstEring). The basic idea of our new approach is to model the overall point density analytically as the sum of influence functions of the data points. Clusters can then be identified by determining density-at tractors and clusters of arbitrary shape can be easily described by a simple equation based on the overall density function. The advantages of our new approach are (1) it has a finn mathematical basis, (2) it has good clustering properties in data sets with large amounts of noise, (3) it allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets and (4) it is significantly faster than existing algorithms. To demonstrate the effectiveness and efficiency of DENCLUE, we perform a series of experiments on a number of different data sets from CAD and molecular biology. A comparison with DBSCAN shows the superiority of our new approach.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Hinneburg, Alexander</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen