NewsMTSC : A Dataset for (Multi-)Target-dependent Sentiment Classification in Political News Articles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Previous research on target-dependent sentiment classification (TSC) has mostly focused on reviews, social media, and other domains where authors tend to express sentiment explicitly. In this paper, we investigate TSC in news articles, a much less researched TSC domain despite the importance of news as an essential information source in individual and societal decision making. We introduce NewsMTSC, a high-quality dataset for TSC on news articles with key differences compared to established TSC datasets, including, for example, different means to express sentiment, longer texts, and a second test-set to measure the influence of multi-target sentences. We also propose a model that uses a BiGRU to interact with multiple embeddings, e.g., from a language model and external knowledge sources. The proposed model improves the performance of the prior state-of-the-art from F1_m=81.7 to 83.1 (real-world sentiment distribution) and from F1_m=81.2 to 82.5 (multi-target sentences).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMBORG, Felix, Karsten DONNAY, 2021. NewsMTSC : A Dataset for (Multi-)Target-dependent Sentiment Classification in Political News Articles. 16th Conference of the European Chapter of the Association for Computational Linguistics (online), 19. Apr. 2021 - 23. Apr. 2021. In: MERLO, Paola, ed., Jorg TIEDEMANN, ed., Reut TSARFATY, ed.. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg, PA: Association for Computational Linguistics, 2021, pp. 1663-1675BibTex
@inproceedings{Hamborg2021NewsM-53815, year={2021}, title={NewsMTSC : A Dataset for (Multi-)Target-dependent Sentiment Classification in Political News Articles}, url={https://www.aclweb.org/anthology/2021.eacl-main.142/}, publisher={Association for Computational Linguistics}, address={Stroudsburg, PA}, booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume}, pages={1663--1675}, editor={Merlo, Paola and Tiedemann, Jorg and Tsarfaty, Reut}, author={Hamborg, Felix and Donnay, Karsten} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53815"> <dc:contributor>Donnay, Karsten</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T13:22:35Z</dc:date> <dcterms:title>NewsMTSC : A Dataset for (Multi-)Target-dependent Sentiment Classification in Political News Articles</dcterms:title> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53815"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hamborg, Felix</dc:creator> <dc:creator>Donnay, Karsten</dc:creator> <dcterms:abstract xml:lang="eng">Previous research on target-dependent sentiment classification (TSC) has mostly focused on reviews, social media, and other domains where authors tend to express sentiment explicitly. In this paper, we investigate TSC in news articles, a much less researched TSC domain despite the importance of news as an essential information source in individual and societal decision making. We introduce NewsMTSC, a high-quality dataset for TSC on news articles with key differences compared to established TSC datasets, including, for example, different means to express sentiment, longer texts, and a second test-set to measure the influence of multi-target sentences. We also propose a model that uses a BiGRU to interact with multiple embeddings, e.g., from a language model and external knowledge sources. The proposed model improves the performance of the prior state-of-the-art from F1_m=81.7 to 83.1 (real-world sentiment distribution) and from F1_m=81.2 to 82.5 (multi-target sentences).</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:language>eng</dc:language> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T13:22:35Z</dcterms:available> </rdf:Description> </rdf:RDF>