Directional volume growing for the extraction of white matter tracts from diffusion tensor data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Diffusion tensor imaging measures diffusion of water in tissue. Within structured tissue, such as neural fiber tracts of the human brain, anisotropic diffusion is observed since the cell membranes of the long cylindric nerves restrict diffusion. Diffusion tensor imaging thus provides information about neural fiber tracts within the human brain which is of major interest for neurosurgery. However, the visualization is a challenging task due to noise and limited resolution of the data. A common visualization strategy of white matter is fiber tracking which utilizes techniques known from flow visualization. The resulting streamlines provide a good impression of the spatial relation of fibers and anatomy. Therefore, they are a valuable supplement for neurosurgical planning. As a drawback, fibers may diverge from the exact path due to numerical inaccuracies during streamline propagation even if higher order integration is used. To overcome this problem, a novel strategy for directional volume growing is presented which enables the extraction of separate tract systems and thus allows to compare and estimate the quality of fiber tracking algorithms. Furthermore, the presented approach is suited to get a more precise representation of the volume encompassing white matter tracts. Thereby, the entire volume potentially containing fibers is provided in contrast to fiber tracking which only shows a more restricted representation of the actual volume of interest. This is of major importance in brain tumor cases where white matter tracts are in the close vicinity of brain tumors. Overall, the presented strategy contributes to make surgical planning safer and more reliable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MERHOF, Dorit, Peter HASTREITER, Christopher NIMSKY, Rudolf FAHLBUSCH, Günther GREINER, 2005. Directional volume growing for the extraction of white matter tracts from diffusion tensor data. Medical Imaging. San Diego, CA. In: CLEARY, Kevin R., ed., Robert L. GALLOWAY, ed.. Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display. SPIE, 2005, pp. 165-172. SPIE Proceedings. 5744. Available under: doi: 10.1117/12.594621BibTex
@inproceedings{Merhof2005-04-12Direc-5778, year={2005}, doi={10.1117/12.594621}, title={Directional volume growing for the extraction of white matter tracts from diffusion tensor data}, number={5744}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display}, pages={165--172}, editor={Cleary, Kevin R. and Galloway, Robert L.}, author={Merhof, Dorit and Hastreiter, Peter and Nimsky, Christopher and Fahlbusch, Rudolf and Greiner, Günther} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5778"> <dc:creator>Fahlbusch, Rudolf</dc:creator> <dc:contributor>Nimsky, Christopher</dc:contributor> <dc:creator>Nimsky, Christopher</dc:creator> <dcterms:issued>2005-04-12</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:03Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5778/1/Directional_Volume_2005.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:format>application/pdf</dc:format> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Hastreiter, Peter</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5778"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5778/1/Directional_Volume_2005.pdf"/> <dc:creator>Hastreiter, Peter</dc:creator> <dcterms:abstract xml:lang="eng">Diffusion tensor imaging measures diffusion of water in tissue. Within structured tissue, such as neural fiber tracts of the human brain, anisotropic diffusion is observed since the cell membranes of the long cylindric nerves restrict diffusion. Diffusion tensor imaging thus provides information about neural fiber tracts within the human brain which is of major interest for neurosurgery. However, the visualization is a challenging task due to noise and limited resolution of the data. A common visualization strategy of white matter is fiber tracking which utilizes techniques known from flow visualization. The resulting streamlines provide a good impression of the spatial relation of fibers and anatomy. Therefore, they are a valuable supplement for neurosurgical planning. As a drawback, fibers may diverge from the exact path due to numerical inaccuracies during streamline propagation even if higher order integration is used. To overcome this problem, a novel strategy for directional volume growing is presented which enables the extraction of separate tract systems and thus allows to compare and estimate the quality of fiber tracking algorithms. Furthermore, the presented approach is suited to get a more precise representation of the volume encompassing white matter tracts. Thereby, the entire volume potentially containing fibers is provided in contrast to fiber tracking which only shows a more restricted representation of the actual volume of interest. This is of major importance in brain tumor cases where white matter tracts are in the close vicinity of brain tumors. Overall, the presented strategy contributes to make surgical planning safer and more reliable.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Merhof, Dorit</dc:creator> <dc:contributor>Merhof, Dorit</dc:contributor> <dc:contributor>Greiner, Günther</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:03Z</dcterms:available> <dcterms:title>Directional volume growing for the extraction of white matter tracts from diffusion tensor data</dcterms:title> <dcterms:bibliographicCitation>First publ. in: Visualization, Image-Guided Procedures, and Display / Robert L. Galloway, Jr. and Kevin R. Cleary (eds.). Bellingham: Spie, 2005, pp. 165-172</dcterms:bibliographicCitation> <dc:creator>Greiner, Günther</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Fahlbusch, Rudolf</dc:contributor> </rdf:Description> </rdf:RDF>